Regio- and stereo-selectivity issues in radical brominations of allylic units of vinylogous esters/carbonates bearing the 2,3,4,6-tetra- O-acetyl- β-D-glucopyranosyl auxiliary and in nucleophilic displacements of the derived allylic bromides \dagger

A. Paula Esteves, ${ }^{a}$ Ana M. Freitas, ${ }^{a}$ Clive M. Raynor ${ }^{b}$ and Richard J. Stoodley * ${ }^{b}$
a Department of Chemistry, University of Minho, Campus de Gaultar, 4700-320 Braga, Portugal
${ }^{b}$ Department of Chemistry, UMIST, PO Box 88, Manchester, UK M60 1QD

Received (in Cambridge, UK) 1st February 2000, Accepted 5th April 2000

Under radical conditions, N-bromosuccinimide effects bromination of the methyl group of the 1-oxyallyl unit of (E) -3-methyl-4-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)but-3-en-2-one 1a, (E)-2-methyl-1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-D-glucopyranosyloxy)pent-1-en-3-one $\mathbf{1 b}$ and methyl/ethyl (E)-2-methyl-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)prop-2-enoate $\mathbf{1 c} / \mathbf{1 d}$ to give the bromoethyl derivatives 14a-14d.

Displacement of the bromine atom of compounds 14a-c occurs without allylic rearrangement (in $\mathrm{Me}_{2} \mathrm{CO}$ under reflux and/or in MeCN at ambient temperature) with sodium azide (to give the azidomethyl derivatives $\mathbf{1 5 a}-\mathbf{c}$), potassium O-ethyl dithiocarbonate [to give the ethoxy(thiocarbonyl)thiomethyl derivatives 16a-c] and with potassium thiocyanate (to give the thiocyanatomethyl derivatives $\mathbf{1 7 a - c}$). Silver(I) thiocyanate in acetonitrile also effects the $\mathbf{1 4 a} \longrightarrow \mathbf{1 7 a}$ conversion.

Compounds $\mathbf{1 4 a}, \mathbf{1 4 b}$ and $\mathbf{1 4 d}$ react with sodium acetate in boiling acetonitrile to give largely the rearranged acetates $\mathbf{1 9 a} / \mathbf{2 0 a}, \mathbf{1 9 b} / \mathbf{2 0 b}$ and $\mathbf{1 9 d} / \mathbf{2 0 d}$ with a moderate degree of stereoselection under kinetically controlled conditions. However, equilibration slowly occurs under the reaction conditions (requiring the presence of NaOAc) to give mainly the unrearranged acetates $\mathbf{1 8 a}, \mathbf{1 8 b}$ and $\mathbf{1 8 d}$. With silver(I) acetate in acetonitrile, the bromides $\mathbf{1 4 a}$ and $\mathbf{1 4 d}$ are transformed into the rearranged acetates $\mathbf{1 9 a} / \mathbf{2 0 a}$ and $\mathbf{1 9 d} / \mathbf{2 0 d}$ with a good degree of stereoselection and without appreciable equilibration. The reaction of the bromide $\mathbf{1 4 a}$ with silver(I) oxide and acetic acid parallels that observed with sodium acetate, the equilibration of the acetates 18a, 19a and 20a being induced by acetic acid.
The bromide 14a reacts with alcohols at ambient temperature in the presence of silver(I) oxide to give, in kinetically controlled reactions, mixtures of rearranged alkoxy derivatives of types 24/25 and unrearranged alkoxy derivatives of type 23. Although the former products predominate, their proportion in the mixture declines as the size of the alcohol increases. Similar results are observed for the bromides $\mathbf{1 4 b}$ and $\mathbf{1 4 d}$.

The ambident reactivity of allylic bromides of type $\mathbf{1 4}$ towards nucleophiles is consistent with the principle of hard and soft acids and bases.

Introduction

Over the past few years, we have demonstrated that β-oxy α, β unsaturated carbonyl compounds incorporating the $2,3,4,6$ -tetra- O-acetyl- β-d-glucopyranosyl auxiliary are versatile intermediates in asymmetric synthesis. ${ }^{2}$ For example, compounds of type 1 exhibit reasonable $R e$-face selectivity in hydrogenation, ${ }^{3}$ bromopropoxylation ${ }^{4}$ and epoxidation reactions, ${ }^{5}$ affording predominantly products of types 2-4; in the case of compounds of types $\mathbf{3}$ and $\mathbf{4}$, it is possible to remove the auxiliary and to generate chirons featuring tertiary carbon stereogenic centres, e.g. of types 5 and 6 (Scheme 1).

Furthermore, the dienes $\mathbf{7 a}$ and $\mathbf{7 b}$, obtained by enol silylation of the vinylogous esters $\mathbf{1 a}$ and $\mathbf{1 b}$, display excellent $R e$ face selectivity in Diels-Alder reactions ${ }^{6}$ affording, for instance, the endo-cycloadducts 8a and $\mathbf{8 b}$ with N-phenylmaleimide (Scheme 2).

In this paper, we describe our efforts to effect the allylic functionalisation of systems of type 1. As outlined in Scheme 3, such a process could, in principle, lead to products of types 9-12. Hopefully, compounds of type 9 would react similarly to their methyl counterparts (cf. Schemes 1 and 2), permitting

[^0]

Scheme 3

access to related products with additional functionality. If allylic rearrangements were to occur, the products of type $\mathbf{1 1}$ or 12 would be of interest in the synthesis of novel chirons.

Results and discussion

In the hope that we would be able to derive the bromide 14a and subsequently replace its halogen atom by N-, S - and O-nucleophiles under $S_{\mathrm{N}} 2$-like conditions, we decided to investigate the reaction of the butenone $\mathbf{1 a}^{7}$ with N -bromosuccinimide (NBS). Although the reagent (in CCl_{4} in the presence of a radical initiator) has been widely used as an allylic brominating agent, ${ }^{8}$ we are unaware of any studies involving its application to α-methyl β-oxy α, β-unsaturated carbonyl compounds. \ddagger

When heated with NBS in carbon tetrachloride in the presence of $2,2^{\prime}$-azoisobutyronitrile (AIBN), the butenone $\mathbf{1 a}$ was converted into one main product (72% yield after crystallisation) that was formulated as the bromide 14a. That the product had been formed without $(E) \longrightarrow(Z)$ isomerisation of the double bond was suggested by its olefinic proton chemical shift (δ 7.47) [which was very similar to that of the reactant $\mathbf{1 a}$ ($\delta 7.36$)] and corroborated by a nuclear Overhauser enhancement difference (NOED) spectroscopic study (in which mutual enhancements were observed between the olefinic proton and the ketonic methyl protons). Similarly, the pentenone $\mathbf{1 b}^{6}$ was transformed into the bromide 14b (79\% yield after crystallisation), the propenoate $\mathbf{1 c}^{3}$ into the bromide $\mathbf{1 4 c}(61 \%$ yield after crystallisation) and the propenoate $\mathbf{1 d}^{3}$ into the bromide $\mathbf{1 4 d}$ (63% yield after crystallisation).

Clearly, the foregoing bromination reactions were highly regioselective, with attack occurring at the unsubstituted primary carbon of the presumed allylic radical intermediates 13a-d (Scheme 4). It is also worth noting that high site selectivity was realised in the case of the reactants $\mathbf{1 a}$ and $\mathbf{1 b}$ (no products arising from bromination of the methyl/methylene
\ddagger Searches of databases (STN International, Beilstein Crossfire) using the substructure \mathbf{A} failed to provide any representative compounds.

A

a $R=M e \quad b \quad R=E t$ c $R=O M e d R=O E t$
Scheme 4
groups adjacent to the vinylogous ester carbonyl functions being detected).

With bromides of type $\mathbf{1 4}$ in hand, attention was directed at defining the regio- and stereo-selectivities of their reactions with representative heteroatomic nucleophiles. In principle, attack may occur to give products of type 9 (and $\mathbf{1 0}$ if olefinic isomerisation occurs) and products of types $\mathbf{1 1}$ and 12. Clearly, several mechanisms are feasible for such substitution reactions. Thus, products of type 9 may arise by $S_{\mathrm{N}} 2$ or $S_{\mathrm{N}} 1$ pathways, products of type $\mathbf{1 0}$ by $S_{\mathrm{N}} 1$ processes, and products of types 11 and 12 by $S_{\mathrm{N}} 2^{\prime}, S_{\mathrm{N}} 1^{\prime}$ or conjugate addition-elimination pathways.

The outcomes of the reactions of the bromides 14a-c with sodium azide, potassium O-ethyl dithiocarbonate and potassium thiocyanate are summarised in Scheme 5.

In boiling acetone, sodium azide reacted with the bromides 14a-c to give the azides 15a-c (in respective yields of 64,74 and 50% after crystallisation); the reaction involving the bromide 14a was also conducted in acetonitrile at ambient temperature to give the azide $\mathbf{1 5 a}$ (68% yield after crystallisation).
Potassium O-ethyl dithiocarbonate (in MeCN at ambient temperature) effected the conversion of the bromides $\mathbf{1 4 a - c}$ into the dithiocarbonates 16a-c (in respective yields of 54, 65 and 78% after chromatography and/or crystallisation).
In the presence of potassium thiocyanate (in MeCN at ambient temperature), the bromides $\mathbf{1 4 a - c}$ were transformed into the thiocyanates $\mathbf{1 7 a}$-c (in respective yields of 76,72 and 60% after crystallisation). In accord with the thiocyanate formulation (rather than the isothiocyanate alternative), compounds 17a-c showed characteristic sharp but weak IR absorptions at $\approx 2150 \mathrm{~cm}^{-1}$ (alkyl isothiocyanates display broad intense absorptions in the $2106-2084 \mathrm{~cm}^{-1}$ region). ${ }^{9}$ Furthermore, the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17 a displayed a signal at δ_{C} 112.2 typical of an alkyl thiocyanate carbon (alkyl isothiocyanate carbons resonate in the $\delta_{\mathrm{C}} 128.6-132.3$ region). ${ }^{10}$

Presumably, the reactions summarised in Scheme 5 take place by $S_{\mathrm{N}} 2$ pathways. The use of silver(I) thiocyanate in place of potassium thiocyanate would be expected to increase the $S_{\mathrm{N}} 1$ character of such reactions; it was hoped therefore to produce alkyl isothiocyanates in preference to alkyl thiocyanates. ${ }^{11}$ However, when treated with the reagent in acetonitrile at ambient temperature, the bromide 14a was slowly transformed into the thiocyanate 17a.

The outcome of the reaction of the bromide $\mathbf{1 4 a}$ with sodium acetate (in MeCN under reflux) is summarised in Scheme 6.

Three substitution products, formulated as the unrearranged acetoxy derivative 18a and the rearranged acetoxy derivatives 19a and 20a, resulted; their proportion varied with time. In the early stages of the reaction, mainly a 6:79:15 mixture of compounds 18a, 19a and 20a was produced; \S after 48 h , the proportion of compounds 18a, 19a and 20a changed to $75: 12: 13$.

From a preparative-scale experiment (which gave a 17:67:16 mixture of compounds 18a, 19a and 20a), two fractions were isolated after HPLC. The first-eluted fraction, obtained in 59% yield, was an 80:20 mixture of the acetoxy derivatives 19a and 20a; after two crystallisations, the product comprised an $86: 14$ mixture of compounds 19a and 20a. The second fraction, obtained in 15% yield, was the acetoxy derivatives $\mathbf{1 8 a}$.

A 74:12:14 mixture of compounds 18a, 19a and 20a was produced when the acetoxy derivative 18a was subjected to the action of sodium acetate in boiling acetonitrile, establishing the equilibrium nature of the reaction. Equilibration did not occur in boiling acetonitrile alone, revealing that the isomerisation was not simply a thermal process.

The bromides $\mathbf{1 4 b}$ and $\mathbf{1 4 d}$ reacted in an analogous manner with sodium acetate (Scheme 6). Thus, the former reaction led to the acetoxy derivatives $\mathbf{1 8 b}, \mathbf{1 9 b}$ and $\mathbf{2 0 b}$ (initially as a 10:71:19 mixture and as a $73: 12: 15$ mixture after 96 h) and the latter reaction to the acetoxy derivatives $\mathbf{1 8 d}, \mathbf{1 9 d}$ and 20 d (the proportions changing from 22:58:20 after 6 h to $56: 26: 18$ after 180 h$)$. \S

From a preparative-scale experiment involving the bromide 14b (which gave a $10: 75: 15$ mixture of compounds $\mathbf{1 8 b}, \mathbf{1 9 b}$ and 20 b together with $\approx 30 \%$ of starting material recovered), one main fraction (50% yield) was isolated after chromatography; it was identified as an $84: 16$ mixture of the acetoxy derivatives $\mathbf{1 9 b}$ and 20b. A similar experiment involving the bromide 14d (which led to a $32: 50: 16$ mixture of the acetoxy derivatives 18d, 19d and 20d together with $\approx 25 \%$ unchanged starting material) resulted in the isolation, after chromatography, of only one homogeneous fraction (8% yield); it was identified as the acetoxy derivative $\mathbf{1 8 d}$.

Clearly, in the early stages, the reactions of the bromides $\mathbf{1 4 a}$, 14b and 14d with sodium acetate are under kinetic control, and afford mainly the rearranged acetoxy derivatives 19a/20a, $\mathbf{1 9 b} / \mathbf{2 0 b}$, and $\mathbf{1 9 d} / \mathbf{2 0 d}$ (with selectivities of $\approx 4: 1$). With time, the products interconvert to give equilibrium mixtures (with a preponderance of compounds $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ in the case of the bromides $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$). Although the kinetic products are formally the result of $S_{\mathrm{N}} 2^{\prime}$-like processes, intermediates of type 21 (formed by conjugate addition reactions) may intervene.
§ The evidence for the assignment of the stereostructures 19a, 19b and 19d to the major rearranged acetoxy derivatives, which is tentative, will be discussed elsewhere.

21

22

Related intermediates of type $\mathbf{2 2}$ may also be involved in the equilibration reactions.
The bromides 14a and 14d were also subjected to the action of silver(I) acetate in acetonitrile at ambient temperature. After $c a .3 \mathrm{~h}$ (when the starting materials were depleted), a $3: 86: 11$ mixture of the acetoxy derivatives 18a, 19a and 20a was present in the former reaction and a 5:87:8 mixture of the acetoxy derivatives 18d, 19d and 20d in the latter reaction. From the reaction involving the bromide 14d, it was possible to isolate compound $\mathbf{1 9 d}$ in 41% yield after crystallisation. The proportion of the acetoxy derivatives 18a, 19a and 20a changed with time and, after 48 h , it was 23:64:13. Evidently, partial equilibration occurs under the reaction conditions.

The reaction of the bromide $\mathbf{1 4 a}$ with silver(I) acetate in acetic acid (generated by adding $\mathrm{Ag}_{2} \mathrm{O}$ to stirred HOAc) was also examined. $\mathbb{\|}$ Within 10 min , a 5:71:24 mixture of the acetoxy derivatives 18a, 19a and 20a was produced; the proportions altered to 26:52:22 after 3 h and to 72:12:16 after 18 h . The product obtained from an 18 h reaction was fractionated by HPLC to give a 50:50 mixture of compounds 19a and 20a in 23% yield and compound 18 a in 51% yield. In parallel experiments, the bromide 14a and a 3:90:7 mixture of the acetoxy derivatives 18a, 19a and 20a were subjected, respectively, to the actions of silver(I) oxide and acetic acid and of acetic acid for 96 h . The mixture of the acetoxy derivatives 18a, 19a and 20a was produced in each case, the proportions being 78:8:14 and 81:8:11.

Clearly, there is a close parallel in the reactions of the bromides $\mathbf{1 4 a}$ and $\mathbf{1 4 d}$ with silver (I) acetate and sodium acetate. However, with the former reagent in acetonitrile, it is possible to largely avoid product equilibration and to generate the kinetic acetoxy derivatives 19a/20a and 19d/20d with high stereoselection ($\approx 10: 1$).

A study was undertaken of the reaction of the bromide $\mathbf{1 4 a}$ with alcohols in the presence of silver(I) oxide (Scheme 7). In

the case of methanol, a $7: 67: 26$ mixture of the methoxy derivatives 23a, 24a and 25a $\|$ was produced within 2 h . Although the proportions did not change, two new products,

[^1]Table 1 Outcome of the reaction of the bromides $\mathbf{1 4 a}, \mathbf{1 4 b}$ and $\mathbf{1 4 d}$ with alcohols in the presence of silver(I) oxide

Substrate	Alcohol	Products	Composition	Ratio of regioisomers ${ }^{a}$	Ratio of stereoisomers ${ }^{b}$
14a	MeOH	23a, 24a, 25a	7:67:26	7:93	72:28
	EtOH	23b, 24b, 25b	11:72:17	11:89	81:19
	PrOH	23c, 24c, 25c	13:62:25	13:87	71:29
	$\mathrm{Pr}^{\text {i }} \mathrm{OH}$	23d, 24d, 25d	15:67:18	15:85	79:21
	$\mathrm{Bu}^{\text {t }} \mathrm{OH}$	23e, 24e, 25e	29:61:10	29:71	86:14
14b	MeOH	28a, 29a, 30a	7:63:30	7:93	68:32
	$\mathrm{Pr}^{\text {i }} \mathrm{OH}$	28b, 29b, 30b	20:52:28	20:80	65:35
	$\mathrm{Bu}^{\text {t }} \mathrm{OH}$	28c, 29c, 30c	29:49:22	29:71	69:31
14c	MeOH	31a, 32a, 33a	12:67:21	12:88	76:24
	$\mathrm{Pr}^{\text {i }} \mathrm{OH}$	31b, 32b, 33b	26:61:13	26:74	82:18
	$\mathrm{Bu}^{t} \mathrm{OH}$	31c, 32c, 33c	35:53:12	35:65	82:18

${ }^{a}$ Ratio of unrearranged alkoxy compounds to rearranged alkoxy compounds. ${ }^{b}$ Ratio of rearranged (R) - to (S)-alkoxy compounds.
identified as the dimethoxy derivative 26a and the tetraacetate 27 (as a $2: 1$ mixture of α - and β-anomers), were in evidence after 24 h . After 120 h , their relative concentrations had doubled ($\approx 20 \%$ of compound 26 a was present in the mixture of compounds 23a, 24a, 25a and 26a).

In a preparative-scale experiment, conducted for 24 h , the product was separated into three fractions by HPLC. The firsteluted fraction (66% yield) consisted of a $70: 30$ mixture of the rearranged methoxy derivatives $\mathbf{2 4 a}$ and 25a; fractional crystallisation provided compound $\mathbf{2 4 a}$ in a pure state (26% yield). The second-eluted fraction (6% yield) was the unrearranged methoxy derivative 23a. The third-eluted fraction ($\approx 7 \%$ yield) was mainly the dimethoxy derivative 26a. When resubjected to the action of silver(I) oxide and methanol, compounds 23a and 24a were both partially converted ($\approx 10 \%$) into the dimethoxy compound 26 (no change occurred in MeOH alone); there was no evidence for the interconversion of the reactants.
Evidently, the methoxy derivatives 23a, 24a and 25a are formed from the bromide 14a in kinetically controlled reactions; the products are then slowly transformed into compounds $26 a$ and 27.

Having established that the methanolysis of the bromide 14a occurred with a high degree of regioselection and a modest degree of stereoselection, it was of interest to extend the study to other alcoholysis reactions (see Scheme 7). The results involving ethanol, propan-1-ol, isopropyl alcohol and tert-butyl alcohol are summarised in Table 1 (and compared with those observed for MeOH). In all instances, mixtures of unrearranged alkoxy derivatives of type $\mathbf{2 3}$ and rearranged alkoxy derivatives of types $\mathbf{2 4}$ and $\mathbf{2 5} \|$ were produced. Although the rearranged products also predominated, their percentage composition of the mixture declined as the size of the alcohol increased. The stereoisomeric ratios of the rearranged alkoxy derivatives were modest and they were not substantially influenced by the nature of the alcohol.

The study (using $\mathrm{MeOH}, \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ and $\mathrm{Bu}^{t} \mathrm{OH}$) was extended to the bromide 14b (Scheme 8) and to the bromide 14c (Scheme 9). As noted in Table 1, the substrates showed reactivities that were similar to those observed for the bromide 14a. In the reaction of the substrate 14b with methanol (in which there was ${ }^{1} \mathrm{H}$ NMR spectral evidence for the production of $\approx 10 \%$ of the dimethoxy derivative 26b), a 69:31 mixture of the methoxy derivatives 29a and 30a \| was isolated (59% yield after chrom-

atography). Similarly, the reaction of the bromide $\mathbf{1 4 b}$ with isopropyl alcohol gave rise to $66: 34$ mixture of the isopropoxy derivatives 29b and 30b \| (43% yield after chromatography) and with tert-butyl alcohol to a $69: 31$ mixture of the tert-butoxy derivatives 29 c and $\mathbf{3 0 c} \|$ (52% yield after chromatography). From the reaction of the bromide 14c with methanol, it was possible to isolate (after HPLC) a $74: 26$ mixture of the methoxy derivatives 32a and 33a (64% yield) and the methoxy derivative 31a (8% yield). The reaction with isopropyl alcohol gave rise (after HPLC) to an $82: 18$ mixture of the isopropoxy derivatives 32b and 33b (55\% yield) and compound 31b (22% yield). Finally, the bromide 14 c underwent reaction with tertbutyl alcohol in the presence of silver(I) oxide to afford (after chromatography) an $82: 18$ mixture of the tert-butoxy derivatives 32c and 33c (48% yield) and compound 31c (32% yield).

The contrasting behaviour of bromides of type 14 towards azide/ O-ethyl dithiocarbonate/thiocyanate anions and acetate anions/alcohols is of interest. It remains to be established
whether the unrearranged products arise by $S_{\mathrm{N}} 2$ routes and the rearranged products by $S_{\mathrm{N}} 2^{\prime}$ processes (or conjugate additionelimination variants) or whether both products originate from delocalised carbenium ion intermediates (paired with bromide anions) formed by $S_{\mathrm{N}} 1$ pathways. However, it is worth noting that the outcomes are consistent with the principle of hard and soft acids and bases. ${ }^{12}$ Thus, bromides of type 14 are attacked only at the softer allylic site by two soft nucleophiles [EtOC(:S)S S^{-}and $\left.\mathrm{NCS}^{-}\right]$and one borderline nucleophile $\left(\mathrm{N}_{3}^{-}\right)$and preferentially at the harder allylic site by two hard nucleophiles (AcO^{-}and ROH).

In conclusion, we consider our findings to be of synthetic and mechanistic note. Compounds of type $\mathbf{1 4}$ appear to be the first representatives of α-bromomethyl β-oxy α, β-unsaturated compounds to be described and their formation provides an opening insight into the regiochemical behaviour of 2-acyl/ alkoxycarbonyl 1-oxy allylic radicals. The substitution reactions, involving a new class of allylic bromides, highlight the contrasting behaviour of soft/borderline nucleophiles compared with hard nucleophiles and contribute to an understanding of ambident allylic reactivity. ${ }^{13}$ Finally, the methodology makes compounds of types 14-17, of notable synthetic potential, accessible by practical routes.

Experimental

Dry solvents, referred to in the ensuing experiments, were prepared as follows: carbon tetrachloride was refluxed over phosphorus pentaoxide and distilled from it; acetone was refluxed over magnesium sulfate, decanted, stirred overnight with calcium chloride, decanted, refluxed over fresh magnesium sulfate, distilled from it and stored over $4 \AA$ molecular sieves; acetonitrile was refluxed over phosphorus pentaoxide, distilled from it and stored over $4 \AA$ molecular sieves. Light petroleum refers to that fraction boiling in the range $40-60^{\circ} \mathrm{C}$; NBS was recrystallised from ten times its weight of water, dried in vacuo (over $\mathrm{P}_{2} \mathrm{O}_{5}$) and stored in the dark; sodium acetate was dried in an oven at $\approx 150^{\circ} \mathrm{C}$.
The progress of reactions was monitored by TLC, using Merck plastic or aluminium sheets coated with silica gel (60 F_{254}); chromatograms were initially examined under UV light (Mineralight UVG2-58 lamp) and visualised with a p-anisaldehyde stain [plates were sprayed with $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}-$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$-EtOH ($1: 4: 95$) and heated]. Column chromatography was effected, under positive pressure from a compressed air line, with Crossfield Sorbsil C60 flash silica or Merck Kieselgel 60. Preparative HPLC was carried out using a column ($25 \times 0.8 \mathrm{~cm}$) of Spherisorb S10 silica, a Kontron 420 pump, a Rheodyne 7125 injector and Kontron 742 UV and ERC-7515A RI detectors.

Evaporations were conducted under reduced pressure (using a water-pump) at $\leqslant 40{ }^{\circ} \mathrm{C}$ with a Büchi rotary evaporator (fitted with a water condenser). Mps were determined with a either an Electrothermal Digital or a Büchi 512 melting point apparatus and are uncorrected. Specific rotations, given in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2}$ g^{-1}, were measured at $\approx 20^{\circ} \mathrm{C}$ using a Thorn Automation Type 243 or an Optical Activity 1000 polarimeter with a cell of path length 0.1 dm . Carbon, hydrogen, nitrogen and sulfur contents were determined with a Carlo Erba Model 1108 analyser; bromine content was measured by oxygen combustion followed by automatic argentometric titration on a Mettler DL25 titrator. A Perkin-Elmer Lambda 15 or a JASCO 7800 spectrometer was used to determine UV spectra; extinction coefficients (ε) are presented in $\mathrm{cm}^{2} \mathrm{mmol}^{-1}$. IR spectra were recorded using a Perkin-Elmer 783, a Perkin-Elmer FTIR-1600 or a Shimadzu IR-345 spectrometer. NMR spectra were measured using a Bruker AC 300, a Varian Unity Plus 300 or a Bruker AM 400 [with distortionless enhancement by polarisation transfer (DEPT) editing for ${ }^{13} \mathrm{C}$ spectra]; J-values and separations are given in Hz . FAB mass spectra $\left(m-\mathrm{NO}_{2} \mathrm{C}_{6}-\right.$
$\mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ as matrix) were measured using a Kratos MS 50 spectrometer.

Allylic bromination studies

General procedure. Recrystallised NBS ($0.890 \mathrm{~g}, 5 \mathrm{mmol}$) and a catalytic quantity of AIBN were added to a stirred suspension of the vinylogous ester/carbonate 1a-d (4 mmol) in dry carbon tetrachloride $\left(60 \mathrm{~cm}^{3}\right)$ and the mixture was heated under reflux. When the reaction was complete [it was best to monitor the progress by ${ }^{1} \mathrm{H}$ NMR spectroscopy (samples were removed and worked up as described below); depletion of the allylic bromide generally took $1-4 \mathrm{~h}$], the mixture was concentrated and the residue partitioned between methylene dichloride and aq. sodium metabisulfite. After having been washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$, the organic phase was concentrated and the product was purified by crystallisation.
(E)-3-Bromomethyl-4-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-d-gluco-pyranosyloxy)but-3-en-2-one 14a. The butenone $\mathbf{1 a}(6.71 \mathrm{~g}, 15.6$ mmol) gave the title compound $\mathbf{1 4 a}(5.51 \mathrm{~g}, 72 \%$) (after crystallisation from EtOAc-hexanes); mp 137-138 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+30(c 0.4$, CHCl_{3}) (Found: C, 44.8; H, 4.9; Br, 15.9. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrO}_{11}$ requires $\mathrm{C}, 44.8 ; \mathrm{H}, 4.9 ; \mathrm{Br}, 15.7 \%)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 245$ ($\varepsilon 13100$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750$ (ester $\mathrm{C}=\mathrm{O}$), 1675 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.045,2.051$ and 2.10 (3, 3 and 6 H , each s, $4 \times \mathrm{MeCO}_{2}$), $2.31\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.87(1 \mathrm{H}$, ddd, $J 2.5,4.5$ and $\left.9.5,5^{\prime}-\mathrm{H}\right), 4.16-4.21\left(3 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right.$ and $\left.3-\mathrm{CH}_{2} \mathrm{Br}\right), 4.31\left(1 \mathrm{H}, \mathrm{dd}, J 4.5\right.$ and $\left.12.5,6^{\prime}-\mathrm{H}\right), 5.02(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.5,1^{\prime}-\mathrm{H}\right), 5.15-5.32\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and 7.47 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$) (in an NOED spectroscopic experiment, irradiation at $\delta 2.31$ enhanced the s at $\delta 7.47$ at 7.9%; irradiation at $\delta 4.18$ caused a 0.7% enhancement of the sat $\delta 2.31$; irradiation at $\delta 7.47$ caused a 3.7% enhancement of the d at $\delta 5.02$ and a 1.3% enhancement of the s at $\delta 2.31$); m / z (FAB) 841
 511 and $509\left(\mathrm{MH}^{+}, 28\right.$ and 35$), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and 169 (40).
(E)-2-Bromomethyl-1-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-d-gluco-pyranosyloxy)pent-1-en-3-one 14b. The pentenone $\mathbf{1 b}(1.89 \mathrm{~g}$, 4.1 mmol) gave the title compound $\mathbf{1 4 b}(1.70 \mathrm{~g}, 79 \%)$ (after crystallisation from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); mp $92-94{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+29$ (c 0.4, CHCl_{3}) (Found: C, 45.6; H, 5.1; Br, 15.1. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BrO}_{11}$ requires $\mathrm{C}, 45.9 ; \mathrm{H}, 5.2 ; \mathrm{Br}, 15.3 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 245$ ($\varepsilon 13800$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750$ and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1670 (vinylogous ester $\mathrm{C}=\mathrm{O})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.13\left(3 \mathrm{H}, J 7.5,5-\mathrm{H}_{3}\right), 2.04,2.05,2.09$ and 2.10 (each 3 H , $\left.\mathrm{s}, 4 \times \mathrm{MeCO}_{2}\right), 2.59-2.67\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.86(1 \mathrm{H}$, ddd, $J 2.5$, 4.5 and $\left.9.5,5^{\prime}-\mathrm{H}\right), 4.17$ and 4.31 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.19\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{Br}\right), 5.01$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.15-5.32\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.48(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; m / z(\mathrm{FAB}) 525$ and $523\left(\mathrm{MH}^{+}\right.$, each $\left.1 \%\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and 169 (35).

Methyl (E)-2-bromomethyl-3-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyloxy)prop-2-enoate $\mathbf{1 4 c}$. The propenoate 1 c (1.70 $\mathrm{g}, 3.8 \mathrm{mmol}$) gave the title compound $\mathbf{1 4 c}(1.18 \mathrm{~g}, 61 \%)$ (after crystallisation from EtOAc-hexanes); mp 108-109 ${ }^{\circ} \mathrm{C} ;\left[\alpha_{\mathrm{D}}{ }_{\mathrm{D}}+59\right.$ (c 0.4, CHCl_{3}) (Found: C, 43.7; H, 4.7; Br, 15.5. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrO}_{12}$ requires $\mathrm{C}, 43.4 ; \mathrm{H}, 4.8 ; \mathrm{Br}, 15.2 \%)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 236(\varepsilon$ 13700); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1755$ (ester $\mathrm{C}=\mathrm{O}$), 1715 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.038$, 2.043, 2.09 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.79(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeO}_{2} \mathrm{C}\right), 3.84\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.9.5,5^{\prime}-\mathrm{H}\right), 4.17$ and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.18\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 10\right.$, separation of inner lines $\left.10,2-\mathrm{CH}_{2} \mathrm{Br}\right)$, 4.96 ($\left.1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.30\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.54(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; m / z (FAB) 527 and $525\left(\mathrm{MH}^{+}, 9\right.$ and $10 \%), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and $169(70)$.

Ethyl (E)-2-bromomethyl-3-(2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)prop-2-enoate 14d. The propenoate 1d (1.38 $\mathrm{g}, 2.9 \mathrm{mmol}$) gave the title compound $\mathbf{1 4 d}(0.985 \mathrm{~g}, 63 \%)$ (after crystallisation from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum); mp $98-99^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}$ $+45\left(c 0.3, \mathrm{CHCl}_{3}\right)$ (Found: C, 44.8; H, 4.9; Br, 15.0. $\mathrm{C}_{20} \mathrm{H}_{27}{ }^{-}$ BrO_{12} requires C, $\left.44.5 ; \mathrm{H}, 5.0 ; \mathrm{Br}, 14.8 \%\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 236$ ($\varepsilon 14600$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ (ester $\mathrm{C}=\mathrm{O}$), 1710 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right), 2.03,2.04,2.09$ and 2.10 (each $3 \mathrm{H}, \mathrm{s}$, $4 \times \mathrm{MeCO}_{2}$), $3.85\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.13-4.33$ $\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2} \mathrm{Br}, 6^{\prime}-\mathrm{H}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\right.$ H), 5.13-5.30 ($3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.52(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; m / z (FAB) 541 and $539\left(\mathrm{MH}^{+}\right.$, each $\left.6 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and 169 (95).

Reactions of allylic bromides with sodium azide

General procedure. A mixture of the allylic bromide $(0.5 \mathrm{mmol})$, sodium azide $(0.033 \mathrm{~g}, 0.5 \mathrm{mmol})$ and dry acetone $\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux. When the reaction was complete (TLC), the mixture was partitioned between water and methylene dichloride. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave a material that was purified in the manner described.

(E)-3-Azidomethyl-4-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-gluco-

 pyranosyloxy)but-3-en-2-one 15a. Method (a).-The material obtained from the reaction of the allylic bromide $14 \mathrm{a}(0.102 \mathrm{~g}$, 0.2 mmol) for 1.5 h was crystallised from ethyl acetate-light petroleum to give the title compound $15 \mathrm{a}(0.060 \mathrm{~g}, 64 \%)$; mp $153-154^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+14\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $48.5 ; \mathrm{H}, 5.3$. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{11}$ requires C, 48.4; H, 5.3\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 240$ $(\varepsilon 16200) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2140,2100$ and $2080\left(\mathrm{~N}_{3}\right), 1750$ (ester $\mathrm{C}=\mathrm{O}$), 1665 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and 1650 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.03,2.05,2.06$ and 2.09 (each $3 \mathrm{H}, \mathrm{s}$, $\left.4 \times \mathrm{MeCO}_{2}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.86(1 \mathrm{H}, \mathrm{ddd}, J 2.5,4.5$ and $9.5,5^{\prime}-\mathrm{H}$), 3.95 and 4.07 (each $1 \mathrm{H}, \mathrm{d}, J 13,3-\mathrm{CH}_{2} \mathrm{~N}$), 4.18 and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $5.01\left(1 \mathrm{H}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.31\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.59(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; $m / z(\mathrm{FAB}) 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}{ }^{+}, 75 \%\right)$ and 169 (100).Method (b).—A mixture of the allylic bromide $14 \mathrm{a}(0.026 \mathrm{~g}$, 0.05 mmol), sodium azide ($0.003 \mathrm{~g}, 0.05 \mathrm{mmol}$) and dry acetonitrile $\left(2.5 \mathrm{~cm}^{3}\right)$ was stirred for 6 h and then concentrated. The residue was partitioned between water and methylene dichloride. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase left the azide 15 a ($0.022 \mathrm{~g}, 93 \%$) [$0.016 \mathrm{~g}, 68 \%$ (after crystallisation from EtOAc-hexanes)].

(E)-2-Azidomethyl-1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-gluco-

 pyranosyloxy)pent-1-en-2-one 15b. The material obtained from the reaction of the allylic bromide $\mathbf{1 4 b}(0.157 \mathrm{~g}, 0.3 \mathrm{mmol})$ for 1.5 h was crystallised from ethyl acetate-hexanes to give the title azide 15b ($0.108 \mathrm{~g}, 74 \%$); mp $72-74^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+10(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 49.6; H, 5.4; N, 8.4. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ requires C, $49.5 ; \mathrm{H}, 5.6 ; \mathrm{N}, 8.7 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 240$ ($\varepsilon 12100$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2120,2100$ and $2080\left(\mathrm{~N}_{3}\right), 1755$ (ester $\left.\mathrm{C}=\mathrm{O}\right), 1665$ (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.13\left(3 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}_{3}\right), 2.03,2.05,2.06$ and 2.09 (each $3 \mathrm{H}, \mathrm{s}$, $\left.4 \times \mathrm{MeCO}_{2}\right), 2.57-2.67\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.85(1 \mathrm{H}, \mathrm{ddd}, J 2.5$, 4.5 and $\left.10,5^{\prime}-\mathrm{H}\right), 3.96$ and 4.09 (each $1 \mathrm{H}, \mathrm{d}, J 13,2-\mathrm{CH}_{2} \mathrm{~N}$), 4.17 and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.99 ($1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}$), 5.13-5.31 ($3 \mathrm{H}, \mathrm{m}, 2^{\prime}$-, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.60(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; m / z(\mathrm{FAB}) 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}{ }^{+}\right.$, $100 \%), 169(69)$ and $43\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}, 72\right)$ \{(after addition of KI) $524\left[\mathrm{M}(\mathrm{K})^{+}, 9 \%\right]$.Methyl (E)-2-azidomethyl-3-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyloxy)prop-2-enoate 15 c . The material obtained from the reaction of the allylic bromide $14 \mathrm{c}(0.263 \mathrm{~g}, 0.5 \mathrm{mmol})$ for 3.2 h was crystallised from methylene dichloride-diethyl
ether-light petroleum to give the title compound $\mathbf{1 5 c}(0.122 \mathrm{~g}$, 50%) as a pale yellow solid; $\mathrm{mp} 117-118^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+8(c 0.3$, CHCl_{3}) (Found: C, 46.6; H, 5.1; N, 8.3. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{12}$ requires C, $46.8 ; \mathrm{H}, 5.2 ; \mathrm{N}, 8.6 \%)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 229$ ($\varepsilon 14000$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2140,2100$ and $2080\left(\mathrm{~N}_{3}\right), 1750$ (ester C=O), 1710 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.03, 2.04, 2.05 and 2.09 (each 3 H , s, $4 \times \mathrm{MeCO}_{2}$), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.83(1 \mathrm{H}$, ddd, $J 2.5,4.5$ and $10,5^{\prime}-\mathrm{H}$), 3.90 and 4.10 (each $1 \mathrm{H}, \mathrm{d}, J 13,2-\mathrm{CH}_{2} \mathrm{~N}$), 4.15 and 4.29 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $\left.6^{\prime}-\mathrm{H}_{2}\right], 4.95\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.11-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; m / z(\mathrm{FAB}) 510\left[\mathrm{M}(\mathrm{Na})^{+}, 30 \%\right]$, 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 95\right)$ and $169(100)$.

Reactions of allylic bromides with potassium O-ethyl dithiocarbonate

General procedure. A mixture of the allylic bromide (0.25 mmol) and potassium O-ethyl dithiocarbonate $(0.040 \mathrm{~g}, 0.25$ mmol) in dry acetonitrile ($12.5 \mathrm{~cm}^{3}$) was stirred at room temperature for 15 min and then concentrated. The residue was partitioned between methylene dichloride and water and the organic phase was washed sequentially with 1% aq. sodium metabisulfite and water. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase left a product that was purified in the matter specified.
(\boldsymbol{E})-3-Ethoxy(thiocarbonyl)thiomethyl-4-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra- O -acetyl- β-d-glucopyranosyloxy)but-3-en-2-one 16a. The reaction of the allylic bromide $14 \mathrm{a}(0.127 \mathrm{~g}, 0.25 \mathrm{mmol})$ gave rise to a product that was subjected to column chromatography [EtOAchexanes ($2: 1$) as eluent]. Crystallisation of the chromatographed material ($0.088 \mathrm{~g}, \approx 64 \%$) from diethyl ether-hexanes gave the title compound $\mathbf{1 6 a}(0.074 \mathrm{~g}, 54 \%)$; mp 104-106 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}$ $-6\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 47.7; H, 5.8; S, 11.4. $\mathrm{C}_{22} \mathrm{H}_{30^{-}}$ $\mathrm{O}_{12} \mathrm{~S}_{2}$ requires C, 48.0; H, 5.5; S, 11.6\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 207$ ($\varepsilon 12300$), 240 (14400) and $282(10500) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1755$ and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1670 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and 1650 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 2.03$, 2.05, 2.08 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $2.28(3 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{H}_{3}\right), 3.85\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.9.5,5^{\prime}-\mathrm{H}\right), 3.96$ and 4.11 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12.5,3-\mathrm{CH}_{2} \mathrm{~S}\right), 4.17$ and 4.30 [each 1 H , dd ($J 2$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.65(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.99\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.30\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.49(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; m / z(\mathrm{FAB}) 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 65%), 169 (100) and 109 (62) \{(after addition of KI) 589 $\left[\mathrm{M}(\mathrm{K})^{+}, 35 \%\right]$.
(E)-2-Ethoxy(thiocarbonyl)thiomethyl-1-(2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra-O-acetyl- β-d-glucopyranosyloxy)pent-1-en-3-one 16b. The reaction of the allylic bromide $\mathbf{1 4 b}(0.131 \mathrm{~g}, 0.25 \mathrm{mmol})$ gave rise to a product that was subjected to column chromatography [EtOAchexanes ($2: 1$) as eluent]. The chromatographed material (0.092 $\mathrm{g}, 65 \%$), isolated as a foam, was identified as the title compound 16b; $[a]_{\mathrm{D}}-2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 48.4; H, 6.2; S, 10.8 . $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{12} \mathrm{~S}_{2}$ requires C, $48.9 ; \mathrm{H}, 5.7$; S, 11.3%); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 1755 (ester $\mathrm{C}=\mathrm{O}$), 1670 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and 1645 (C=C); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{MeCH} \mathrm{H}_{2} \mathrm{O}$), $2.03,2.04,2.08$ and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 2.55-2.65 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), $3.84\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $9.5,5^{\prime}-$ H), 3.99 and 4.12 (each $1 \mathrm{H}, \mathrm{d}, J 12.5,2-\mathrm{CH}_{2} \mathrm{~S}$), 4.17 and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.65\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.30$ $\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.50(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \mathrm{m} / z$ (FAB) 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 73 \%\right)$ and 169 (100) \{(after addition of KI) 603 $\left.\left[\mathrm{M}(\mathrm{K})^{+}, 100 \%\right]\right\}$.

Methyl (E)-2-ethoxy(thiocarbonyl)thiomethyl-3-(2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}-$ tetra- O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosyloxy)prop-2-enoate 16c. The reaction of the allylic bromide $14 \mathrm{c}(0.131 \mathrm{~g}, 0.25 \mathrm{mmol})$ gave
rise to a product that was crystallised from methylene dichloride-diethyl ether-light petroleum to give the title compound 16c ($0.110 \mathrm{~g}, 78 \%$); mp $105.5-107^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-4(c \quad 0.46$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 46.6; $\mathrm{H}, 5.3 ; \mathrm{S}, 10.9 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{13} \mathrm{~S}_{2}$ requires C, $46.6 ; \mathrm{H}, 5.3 ; \mathrm{S}, 11.3 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1780,1760$ and 1745 (ester $\mathrm{C}=\mathrm{O}$), 1720 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 2.03,2.04,2.08$ and 2.11 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.83$ $\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.04(2 \mathrm{H}, \mathrm{AB}$ q, $J 12.5$, separation of inner lines $13,2-\mathrm{CH}_{2} \mathrm{~S}$), 4.16 and 4.20 [each 1 H , dd ($J 2.5$ and 12.5) and dd $(J 4.5$ and 12.5$), 6^{\prime}-\mathrm{H}_{2}$], $4.66(2 \mathrm{H}, \mathrm{q}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.12-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.9$ and $21.0\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right)$, $29.8\left(2-\mathrm{CH}_{2}\right), 52.3$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 61.8\left(6^{\prime}-\mathrm{CH}_{2}\right), 68.1,70.8,72.5$ and $73.1\left(2^{\prime}-, 3^{\prime}-\right.$, $4^{\prime}-$ and $\left.5^{\prime}-\mathrm{CH}\right)$, $70.2\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 101.0\left(1^{\prime}-\mathrm{CH}\right), 109.2(2-\mathrm{C})$, $155.7(3-\mathrm{CH}), 166.9,169.4,169.6,170.5$ and $170.9\left(\mathrm{CO}_{2} \mathrm{Me}\right.$ and $4 \times \mathrm{MeCO})$ and $214.1(\mathrm{CS}) ; m / z(\mathrm{FAB}) 567\left(\mathrm{MH}^{+}, 2 \%\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 70\right), 169\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}, 95\right), 109$ (70) and 43 (100) $\{(a f t e r ~ a d d i t i o n ~ o f ~ K I) ~ 605[M(K) ~+~ 15 \%]\} . ~ . ~$

Reactions of allylic bromides with potassium thiocyanate

General procedure. A mixture of the allylic bromide (0.5 mmol), potassium thiocyanate ($0.049 \mathrm{~g}, 0.5 \mathrm{mmol}$) and dry acetonitrile $\left(25 \mathrm{~cm}^{3}\right)$ was stirred until the reaction was complete (TLC). Evaporation of the solvent left a residue, which was partitioned between methylene dichloride and 1% aq. sodium metabisulfite. After having been washed with water, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was analysed by 300 or $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy and then purified in the manner described.

(E)-4-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyloxy)-

3-(thiocyanatomethyl)but-3-en-2-one 17a. The product obtained from the reaction of the allylic bromide $14 \mathrm{a}(0.255 \mathrm{~g}, 0.5 \mathrm{mmol})$ for 6 h was predominantly the thiocyanate 17a. Crystallisation of the material from ethyl acetate-light petroleum gave the title compound 17a ($0.185 \mathrm{~g}, 76 \%$); mp 152-152.5 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+33$ (c $0.4, \mathrm{CHCl}_{3}$) (Found: C, 49.4; H, 5.5; N, 2.7; S, 6.8. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{11} \mathrm{~S}$ requires C, 49.3; H, 5.2; N, 2.9; S, 6.6\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 242$ ($\varepsilon 12400$), $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 2153(\mathrm{C} \equiv \mathrm{N}), 1748$ (ester $\mathrm{C}=\mathrm{O}$), 1668 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1642(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; CDCl_{3}) 2.03, 2.04, 2.09 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 2.31 $\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.64$ and 3.93 (each $1 \mathrm{H}, \mathrm{d}, J 12.5,3-\mathrm{CH}_{2} \mathrm{~S}$), 3.86 $\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $10,5^{\prime}-\mathrm{H}$), 4.17 and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $\left.6^{\prime}-\mathrm{H}_{2}\right], 5.05(1 \mathrm{H}, \mathrm{d}, J$ $\left.7.5,1^{\prime}-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.20(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 9 , $\left.2^{\prime}-\mathrm{H}\right), 5.29\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$ and $7.63(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.43, 20.58 and $20.61\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right)$, 25.17 ($1-$ $\left.\mathrm{CH}_{3}\right), 26.09\left(3-\mathrm{CH}_{2} \mathrm{~S}\right), 61.28\left(6^{\prime}-\mathrm{CH}_{2}\right), 67.61,70.23,71.84$ and 72.73 ($2^{\prime}-, 3^{\prime}-$, $4^{\prime}-$ and $\left.5^{\prime}-\mathrm{CH}\right), 100.2$ ($\left.1^{\prime}-\mathrm{CH}\right), 112.2$ (SCN), 119.2 (3-C), $156.4(4-\mathrm{CH}), 169.2,169.4,169.9$ and 170.4 $(4 \times \mathrm{MeCO})$ and $194.0(2-\mathrm{CO}) ; m / z(\mathrm{FAB}) 510\left[\mathrm{M}(\mathrm{Na})^{+}, 4 \%\right]$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and $169(90)$.
(E)-1-($2^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-Tetra-O-acetyl- β-d-glucopyranosyloxy)-2-(thiocyanatomethyl)pent-1-en-3-one 17b. The product obtained from the reaction of the allylic bromide $\mathbf{1 4 b}(0.262 \mathrm{~g}, 0.5 \mathrm{mmol})$ for 7 h was predominantly the thiocyanate $\mathbf{1 7 b}$. Crystallisation of the material from ethyl acetate-light petroleum gave the title compound $\mathbf{1 7 b}(0.180 \mathrm{~g}, 72 \%)$; $\mathrm{mp} 151-152^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+33(c 0.4$, CHCl_{3}) (Found: C, $50.5 ; \mathrm{H}, 5.7$; N, 2.7; S, 6.8. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{11} \mathrm{~S}$ requires C, $50.3 ; \mathrm{H}, 5.4 ; \mathrm{N}, 2.8 ; \mathrm{S}, 6.4 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 243$ ($\varepsilon 17$ 200); $v_{\text {max }}$ (Nujol)/cm ${ }^{-1} 2153(\mathrm{C} \equiv \mathrm{N})$, 1756 (ester $\mathrm{C}=\mathrm{O}$), 1670 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.15\left(3 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}_{3}\right), 2.04,2.05,2.10$ and 2.11 (each $\left.3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}\right), 2.64\left(2 \mathrm{H}, \mathrm{q}, J 7.5,4-\mathrm{H}_{2}\right), 3.66$ and 3.96 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12.5,2-\mathrm{CH}_{2} \mathrm{~S}\right), 3.86(1 \mathrm{H}$, ddd, $J 2.5$, 4.5 and 10 , $\left.5^{\prime}-\mathrm{H}\right), 4.18$ and 4.31 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$
and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $5.04\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime} \mathrm{H}\right), 5.13-5.33(3 \mathrm{H}, \mathrm{m}$, $2^{\prime}-$, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.65(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (FAB) 524 $\left[\mathrm{M}(\mathrm{Na})^{+}, 5 \%\right], 502\left(\mathrm{MH}^{+}, 1\right)$ and $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$.

Methyl (E)-3-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, 4^{\prime}, \mathbf{6}^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyl-oxy)-2-(thiocyanatomethyl)prop-2-enoate 17 c . The product obtained from the reaction of the allylic bromide $14 \mathrm{c}(0.210 \mathrm{~g}$, 0.4 mmol) for 15 h was predominantly the thiocyanate $\mathbf{1 7 c}$. Crystallisation of the material from ethyl acetate-light petroleum gave the title compound $17 \mathrm{c}(0.121 \mathrm{~g}, 60 \%)$; mp 131$132.5^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+42\left(c 0.35, \mathrm{CHCl}_{3}\right)$ (Found: C, $47.6 ; \mathrm{H}, 5.3 ; \mathrm{N}$, 2.7; S, 6.8. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{12} \mathrm{~S}$ requires C, 47.7; H, 5.0; N, 2.8; S, $6.4 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 234(\varepsilon 15600) ; v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 2149$ $(\mathrm{C}=\mathrm{N}), 1752$ and 1733 (ester $\mathrm{C}=\mathrm{O}$), 1700 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1648(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.03,2.04$ and $2.09\left(3,3\right.$ and 6 H , each s, $4 \times \mathrm{MeCO}_{2}$), 3.63 and 4.03 (each 1 H , d, $\left.J 13,2-\mathrm{CH}_{2} \mathrm{~S}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.83(1 \mathrm{H}, \mathrm{ddd}, J 2.5,4.5$ and $\left.9.5,5^{\prime}-\mathrm{H}\right), 4.16$ and 4.30 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $\left.6^{\prime}-\mathrm{H}_{2}\right], 4.99\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime} \mathrm{H}\right), 5.14(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,4^{\prime}-\mathrm{H}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.9.5,2^{\prime}-\mathrm{H}\right), 5.27(1 \mathrm{H}, \mathrm{t}, J 9$, $\left.3^{\prime}-\mathrm{H}\right)$ and $7.69(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; m / z (FAB) 526 [M(Na) $\left.{ }^{+}, 11 \%\right], 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 75\right)$ and $169(100)$.

Reaction of the allylic bromide 14a with silver(I) thiocyanate

A mixture of the allylic bromide $\mathbf{1 4 a}(0.051 \mathrm{~g}, 0.1 \mathrm{mmol})$, silver(I) thiocyanate ($0.0166 \mathrm{~g}, 0.1 \mathrm{mmol}$) and dry acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ was stirred. At intervals, aliquots $\left(\approx 1 \mathrm{~cm}^{3}\right)$ were removed and concentrated; the residue was then partitioned between methylene dichloride and water. The material, obtained after evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase, was analysed by $300 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectroscopy. After 3 h , mainly an $89: 11$ mixture of compounds 14a and 17a was present; the ratio changed to $74: 26$ after $6 \mathrm{~h}, 25: 75$ after 24 h and 3:97 after 48 h .

Reactions of allylic bromides with sodium acetate

General procedure. A mixture of the allylic bromide (0.5 $\mathrm{mmol})$, dry sodium acetate $(0.369 \mathrm{~g}, 1.5 \mathrm{mmol})$ and dry acetonitrile $\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux for the time specified. The solvent was then evaporated and the residue was partitioned between methylene dichloride and water. After having been washed with water, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was analysed by 300 or 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy and then purified in the manner described.

Reaction involving the allylic bromide 14a. Method (a).-A mixture of the allylic bromide $\mathbf{1 4 a}(0.102 \mathrm{~g}, 0.2 \mathrm{mmol})$, dry sodium acetate $(0.016 \mathrm{~g}, 0.2 \mathrm{mmol})$ and dry acetonitrile (10 cm^{3}) was heated under reflux. At intervals, aliquots ($\approx 1 \mathrm{~cm}^{3}$) were removed, worked up and analysed. After 3 h (when $\approx 60 \%$ of unchanged 14a remained), the product comprised mainly a 6:79:15 mixture of compounds 18a, 19a and 20a [the proportions were estimated from the integrals of the signals at $\delta 7.53$ (attributed to the $4-\mathrm{H}$ of 18a), 6.79 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 19a) and 6.85 (ascribed to the $1 "-\mathrm{H}$ of 20a)]. After 6 h (when $\approx 35 \%$ of unchanged $\mathbf{1 4 a}$ was present), the proportions were unaltered. After 24 h (when no 14a was detected), the proportions of compounds 18a, 19a and 20a were $60: 26: 14$. Finally, after 48 h , the product comprised mainly a $75: 12: 13$ mixture of compounds 18a, 19a and 20a.

Method (b).-(i) The reaction involving the allylic bromide $14 \mathrm{a}(0.255 \mathrm{~g}, 0.5 \mathrm{mmol})$ using the general procedure gave rise, after 3 h , to a product that comprised mainly a 17:67:16 mixture of the acetoxy derivatives 18a, 19a and 20a. Subjection of the mixture to HPLC [EtOAc-hexanes $(2: 1)$ as eluent] gave two fractions.

The first-eluted fraction $(0.144 \mathrm{~g}, 59 \%)$, isolated as a colourless syrup, was identified as an $80: 20$ mixture of ($\left.l^{\prime \prime} S\right)-3-\left[l^{\prime \prime}-\right.$ acetoxy-1"-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)-
methyllbut-3-en-2-one 19a and its ($l^{\prime \prime} R$)-isomer 20a. After two crystallisations from diethyl ether-hexanes, the sample $(0.104 \mathrm{~g}$, 43%) (now as an 86:14 mixture of 19a and 20a) showed mp $123-124^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-50\left(c 0.2, \mathrm{CHCl}_{3}\right)$ (Found: C, $51.3 ; \mathrm{H}, 5.8$. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{13}$ requires C, $51.6 ; \mathrm{H}, 5.8 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 210(\varepsilon$ 8900); $v_{\max }$ (Nujol)/cm ${ }^{-1} 1750$ and 1737 (ester $\mathrm{C}=\mathrm{O}$) and 1676 (enone $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.00,2.01,2.02,2.04,2.08$, 2.10 and $2.11(0.4,3,3,2.6,5.2,0.4$ and 0.4 H , each $\mathrm{s}, 5 \times$ $\left.\mathrm{MeCO}_{2}\right), 2.34$ and $2.35\left(0.4\right.$ and 2.6 H , each s, $\left.1-\mathrm{H}_{3}\right), 3.66$ and 3.72 [0.14 and 0.86 H , dt ($J 10$ and 3) and ddd ($J 2.5,5$ and 10), $\left.5^{\prime}-\mathrm{H}\right], 4.09,4.13-4.15$ and $4.27[0.86,0.28$ and 0.86 H , dd $(J 2.5$ and 12.5), m and dd (J 5 and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.89 and $4.96(0.86$ and 0.14 H , each d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 5.00-5.10\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$, $5.22\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 6.23,6.30,6.33$ and $6.38(0.14,0.86$, 0.14 and 0.86 H , each $\left.\mathrm{s}, 4-\mathrm{H}_{2}\right)$ and 6.79 and $6.85(0.86$ and 0.14 H , each $\left.\mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right) ; m / z(\mathrm{FAB}) 511\left[\mathrm{M}(\mathrm{Na})^{+}, 7 \%\right], 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, $60)$ and 169 (100).

The second-eluted fraction $(0.036 \mathrm{~g}, 15 \%)$, isolated as a colourless syrup, was identified as (E)-3-acetoxymethyl-4-($2^{\prime}, 3^{\prime}$, $4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)but-3-en-2-one 18a. After crystallisation from ethyl acetate-hexanes, the sample $(0.026 \mathrm{~g}, 11 \%)$ showed $\mathrm{mp} \mathrm{103-104}{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-8\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 51.4; H, 5.8. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{13}$ requires C, $51.6 ; \mathrm{H}, 5.8 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 201(\varepsilon 1900), 239(20200)$ and 311 (1500); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1755$ and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1670 (vinylogous ester $\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.02, 2.03, 2.04, 2.06 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 5 \times \mathrm{MeCO}_{2}$), 2.28 $\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.86\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.17$ and 4.30 [each 1 H , dd $(J 2.5$ and 12.5) and dd $(J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.73 and 4.87 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11.5,3-\mathrm{CH}_{2} \mathrm{O}\right), 5.00(1 \mathrm{H}$, $\left.\mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$ and 7.53 $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.62,20.68,20.82,20.97$ and $21.19\left(5 \times \mathrm{CH}_{3} \mathrm{CO}\right), 26.27\left(1-\mathrm{CH}_{3}\right), 55.67\left(3-\mathrm{CH}_{2}\right), 61.57$ $\left(6^{\prime}-\mathrm{CH}_{2}\right), 67.79,70.65,72.20$ and $72.93\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{CH}\right)$, 100.7 (1'-CH), 119.2 (3-C), 157.0 (4-CH), 169.1, 169.4, 170.3, 170.6 and $170.8(5 \times \mathrm{MeCO})$ and $195.9(2-\mathrm{CO}) ; m / z(\mathrm{FAB}) 527$ $\left[\mathrm{M}(\mathrm{K})^{+}, 1 \%\right], 511\left[\mathrm{M}(\mathrm{Na})^{+}, 7\right], 489\left(\mathrm{MH}^{+}, 1\right)$ and 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$.
(ii) The aforecited reaction was repeated and the product was subjected to column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ as eluent). One main fraction ($0.105 \mathrm{~g}, 43 \%$) was collected which was an $80: 20$ mixture of compounds 19a and 20a.

Reaction involving the allylic bromide 14b. Method (a).—A mixture of the allylic bromide $\mathbf{1 4 b}(0.105 \mathrm{~g}, 0.2 \mathrm{mmol})$, dry sodium acetate $(0.033 \mathrm{~g}, 0.4 \mathrm{mmol})$ and dry acetonitrile (10 cm^{3}) was heated under reflux. At intervals, aliquots $\left(\approx 1 \mathrm{~cm}^{3}\right)$ were removed, worked up and analysed. After 3 h (when $\approx 30 \%$ of $\mathbf{1 4 b}$ remained), the product comprised mainly a $10: 71: 19$ mixture of the acetoxy derivatives $\mathbf{1 8 b}, \mathbf{1 9 b}$ and $\mathbf{2 0 b}$ [the proportions were estimated from the integrals of the signals at $\delta 7.53$ (ascribed to the $1-\mathrm{H}$ of $\mathbf{1 8 b}$), 6.80 (attributed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{1 9 b}$) and 6.86 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 20b)]. After 6 h (when $\mathbf{1 4 b}$ was absent), the proportions were $18: 64: 18$. After 24 h , the proportions were $49: 35: 16$. Finally, after 96 h , the product comprised mainly a 73 : 12 : 15 mixture of compounds $\mathbf{1 8 b}, \mathbf{1 9 b}$ and $\mathbf{2 0 b}$.

Method (b).-The reaction involving the allylic bromide $\mathbf{1 4 b}$ $(0.262 \mathrm{~g}, 0.5 \mathrm{mmol})$ using the general procedure gave rise, after 3 h , to a product that contained mainly a $10: 75: 15$ mixture of compounds $\mathbf{1 8 b}, \mathbf{1 9 b}$ and $\mathbf{2 0 b}$ ($\approx 30 \%$ of $\mathbf{1 4 b}$ remained). Subjection of the mixture to column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ as eluent) led to the isolation of one main fraction $(0.126 \mathrm{~g}, 50 \%)$, identified as an $84: 16$ mixture of ($\left.1^{\prime \prime} S\right)$-2-[$1^{\prime \prime}$-acetoxy- $1^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$ -tetra-O-acetyl- β-D-glucopyranosyloxy)-methyl]pent-1-en-3-one 19b and its ($l^{\prime \prime} R$)-isomer 20b. After crystallisation from diethyl ether-light petroleum, the sample ($0.080 \mathrm{~g}, 32 \%$) (still as an 84:16 mixture of $\mathbf{1 9 b}$ and 20b) showed $\mathrm{mp} 104-106^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}$ $-37\left(c 0.25, \mathrm{CHCl}_{3}\right)$ (Found: C, 52.9; H, 5.9. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{13}$ requires $\mathrm{C}, 52.6 ; \mathrm{H}, 6.0 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 211(\varepsilon 8900) ; v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1744$ (ester $\left.\mathrm{C}=\mathrm{O}\right), 1677$ (enone $\mathrm{C}=\mathrm{O}$) and $1638(\mathrm{C}=\mathrm{C})$;
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07$ and $1.09(0.48$ and 2.52 H , each t , $\left.J 7.5,5-\mathrm{H}_{3}\right), 1.99,2.00,2.01,2.020,2.024,2.04,2.07,2.09$ and $2.11(0.48,2.52,0.48,2.52,0.48,2.52,5.04,0.48$ and 0.48 H , each s, $\left.5 \times \mathrm{MeCO}_{2}\right), 2.64-2.80\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.66$ and 3.72 [0.16 and 0.84 H , dt ($J 10$ and 3$)$ and ddd $(J 2.5,5$ and 10$)$, $\left.5^{\prime}-H\right], 4.08,4.12-4.15$ and 4.27 [0.84, 0.32 and 0.84 H , dd $(J 2.5$ and 12.5), m and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.88(0.84 \mathrm{H}, \mathrm{d}, J 8$, $\left.0.84 \times 1^{\prime}-\mathrm{H}\right), 4.97-5.10\left(2.16 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $4^{\prime}-\mathrm{H}$ and $0.16 \times$ $\left.1^{\prime}-\mathrm{H}\right), 5.22\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 6.21,6.27,6.28$ and 6.33 (0.16 , $0.16,0.84$ and 0.84 H , each $\left.\mathrm{s}, 1-\mathrm{H}_{2}\right)$ and 6.80 and $6.86(0.84$ and 0.16 H , each $\left.\mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right) ; m / z(\mathrm{FAB}) 525\left[\mathrm{M}(\mathrm{Na})^{+}, 5 \%\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 50\right)$ and 169 (100).

Reaction involving the allylic bromide 14d. Method (a).—A mixture of the allylic bromide $\mathbf{1 4 d}(0.054 \mathrm{~g}, 0.1 \mathrm{mmol})$, sodium acetate $(0.0164 \mathrm{~g}, 0.2 \mathrm{mmol})$ and dry acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux. At intervals, aliquots $\left(\approx 1 \mathrm{~cm}^{3}\right)$ were removed, worked up and analysed. After 6 h (when 22% of $\mathbf{1 4 d}$ remained), the product comprised mainly a $22: 58: 20$ mixture of the acetoxy derivatives $\mathbf{1 8 d} \mathbf{d} \mathbf{1 9 d}$ and $\mathbf{2 0 d}$ [the composition was estimated from the integrals of the signals at $\delta 7.60$ (attributed to the $3-\mathrm{H}$ of $\mathbf{1 8 d}$), 6.20 (assigned to an olefinic H of $\mathbf{1 9 d}$) and 6.14 (ascribed to an olefinic H of 20d)]. After 180 h , the proportions of compounds 18d, 19d and 20d were 56:26:18.

Method (b).-The reaction involving the allylic bromide $\mathbf{1 4 d}$ $(0.269 \mathrm{~g}, 0.5 \mathrm{mmol})$ using the general procedure gave rise, after 6.5 h , to a product comprising 25% unchanged $\mathbf{1 4 d}$ and a $32: 52: 16$ mixture of compounds 18d, 19d and 20d. Subjection of the mixture of column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ as eluent) gave three main fractions.

The first-eluted fraction $(0.090 \mathrm{~g})$ comprised 23% unchanged $\mathbf{1 4 d}$ and an 80:20 mixture of the acetoxy derivatives $\mathbf{1 9 d}$ and 20d.

The second-eluted fraction $(0.120 \mathrm{~g})$ comprised 27% unchanged 14d and a $32: 49: 19$ mixture of the acetoxy derivatives $\mathbf{1 8 d}$, 19d and 20d.

The third-eluted fraction ($0.020 \mathrm{~g}, 8 \%$) was ethyl (E)-2-acetoxymethyl-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-glucopyranos-yloxy)prop-2-enoate 18d; $[\alpha]_{\mathrm{D}}-16$ (c $\left.0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1750$ (ester $\mathrm{C}=\mathrm{O}$), 1720 (vinylogous carbonate $\mathrm{C}=\mathrm{O}$) and $1660(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me} \mathrm{CH}_{2}$), 2.04, 2.05, 2.08 and 2.12 (6, 3, 3 and 3 H , each s, $\left.5 \times \mathrm{MeCO}_{2}\right), 3.86\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.18$ and 4.31 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.24\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.76$ and 4.86 (each $1 \mathrm{H}, \mathrm{d}$, $\left.J 11.5,2-\mathrm{CH}_{2} \mathrm{O}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.13-5.30(3 \mathrm{H}, \mathrm{m}$, $2^{\prime}-$, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.60(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; m / z$ (FAB) 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 65 \%\right), 169(85)$ and 109 (100) \{(after addition of KI) $\left.557\left[\mathrm{M}(\mathrm{K})^{+}, 100 \%\right]\right\}$.

Equilibration of the allylic acetates 18a, 19a and 20a. Method (a).—A mixture of the acetoxy compound $\mathbf{1 8 a}(0.005 \mathrm{~g}, 0.01$ $\mathrm{mmol})$, sodium acetate $(0.0008 \mathrm{~g}, 0.01 \mathrm{mmol})$ and dry acetonitrile $\left(1 \mathrm{~cm}^{3}\right)$ was heated under reflux for 18 h and then the solvent was evaporated. The residue was partitioned between water and methylene dichloride and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to leave mainly a 74:12:14 mixture of compounds 18a, 19a and 20a.

Method (b).—A solution of a 3:90:7 mixture of the allylic acetates 18a, 19a and 20a $(0.015 \mathrm{~g}, 0.03 \mathrm{mmol})$ in acetic acid $\left(1.5 \mathrm{~cm}^{3}\right)$ was stirred in the dark. At intervals, aliquots $(\approx 0.5$ cm^{3}) were removed, worked up $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ was added to the solution which, after having been washed successively with aq. NaHCO 3 and water, was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated] and analysed. Compounds 18a, 19a and 20a were present in proportions of $60: 35: 5$ after $24 \mathrm{~h}, 77: 16: 7$ after 48 h and $81: 8: 11$ after 96 h .

The reaction of allylic bromide $\mathbf{1 4 a}(0.015 \mathrm{~g}, 0.03 \mathrm{mmol})$ with silver(I) oxide and acetic acid was conducted simultaneously under similar conditions. The products comprised compounds

18a, 19a and 20a in proportions of 55:28:17 after 24 h , $71: 15: 14$ after 48 h and $78: 8: 14$ after 96 h .

Reactions of allylic bromides with silver(I) acetate

General procedure. A mixture of the allylic bromide (0.5 $\mathrm{mmol})$, silver(I) acetate ($0.084 \mathrm{~g}, 0.5 \mathrm{mmol}$) and dry acetonitrile $\left(25 \mathrm{~cm}^{3}\right)$ was stirred for the time specified. The solvent was then evaporated and the residue was partitioned between methylene dichloride and water. After having been washed with water, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was analysed by 300 or $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy and then purified in the manner described.

Reaction involving the allylic bromide 14a. (i) From the reaction involving the allylic bromide $\mathbf{1 4 a}(0.051 \mathrm{~g}, 0.1 \mathrm{mmol})$, aliquots ($\approx 1 \mathrm{~cm}^{3}$) were removed, worked up and analysed at intervals. After 3 h (when no 14a remained), mainly a 3:86:11 mixture of compounds 18a, 19a and 20a was present. After 6 h , the proportions of compounds 18a, 19a and 20a were 6:83:11. After 24 h , a 14:75:11 mixture of compounds 18a, 19a and 20a was present. Finally, after 48 h , the proportions of compounds 18a, 19a and 20a were 23:64:13.
(ii) The reaction involving the allylic bromide $\mathbf{1 4 a}(0.255 \mathrm{~g}$, 0.5 mmol) for 3 h gave rise to a product that, after crystallisation from diethyl ether-hexanes, comprised a 5:91:4 mixture of compounds 18a, 19a and 20a ($0.098 \mathrm{~g}, 40 \%$).

Reaction involving the allylic bromide 14d. (With A. Schofield.)-The reaction involving the allylic bromide 14d ($0.270 \mathrm{~g}, 0.5 \mathrm{mmol}$) for 2.5 h gave rise to a product that comprised mainly a 5:87:8 mixture of the acetoxy derivatives $\mathbf{1 8 d}$, 19d and 20d. Crystallisation of the mixture from diethyl ether gave ethyl ($1^{\prime \prime} S$)-2-[$1^{\prime \prime}$-acetoxy-1"-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β -D-glucopyranosyloxy)methyl]prop-2-enoate 19d ($0.107 \mathrm{~g}, 41 \%$); $\mathrm{mp} 96-98^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-48\left(c 0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 50.7; $\mathrm{H}, 5.7$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{14}$ requires C, $51.0 ; \mathrm{H}, 5.8 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765$ and 1750 (ester $\mathrm{C}=\mathrm{O}$) and 1715 (unsat. ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me} \mathrm{CH}_{2}\right), 2.01,2.02,2.03,2.08$ and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 5 \times \mathrm{MeCO}_{2}$), $3.73\left(1 \mathrm{H}\right.$, ddd, $J 2,4.5$ and $10,5^{\prime}-\mathrm{H}$), $4.11\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and 12, $\left.6^{\prime}-\mathrm{H}\right)$, 4.15-4.31 ($3 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.05(1 \mathrm{H}$, dd, $J 8$ and 9.5 , $\left.2^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.22\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 6.20$ and 6.46 (each $\left.1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right)$ and $6.78\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.9,21.0$ and $21.2(4 \times$ $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 61.3$ and $62.0\left(\mathrm{OCH}_{2} \mathrm{Me}\right.$ and $\left.6^{\prime}-\mathrm{CH}_{2}\right), 68.6,71.3,72.5$ and $73.0\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{CH}\right), 90.0\left(1^{\prime \prime}-\mathrm{CH}\right), 98.3\left(1^{\prime}-\mathrm{CH}\right)$, $129.4\left(3-\mathrm{CH}_{2}\right), 136.3(2-\mathrm{C}), 164.6(1-\mathrm{CO})$ and $169.6,169.8,170.5$ and $171.0(5 \times \mathrm{MeCO}) ; m / z(\mathrm{FAB}) 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 55), 169 (100) and 109 (70) \{(after addition of KI) $\left.557\left[\mathrm{M}(\mathrm{K})^{+}, 85 \%\right]\right\}$.

Reaction of the allylic bromide 14 a with acetic acid in the presence of silver(I) oxide

(i) Silver(I) oxide ($0.025 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added to stirred acetic acid $\left(5 \mathrm{~cm}^{3}\right)$ in the dark followed, after 1.5 h , by the allylic bromide $14 \mathrm{a}(0.051 \mathrm{~g}, 0.1 \mathrm{mmol})$. At intervals, aliquots ($\approx 1 \mathrm{~cm}^{3}$) were removed, worked up [the sample was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of Celite ${ }^{\circledR}$; the filtrate was then washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated] and analysed. After 10 min , a 5:71:24 mixture of compounds 18a, 19a and 20a was present. The proportions changed to $9: 67: 24$ after $30 \mathrm{~min}, 26: 52: 22$ after 3 h and 72:12:16 after 18 h .
(ii) The aforecited reaction of the allylic bromide $\mathbf{1 4 a}$ (0.255 $\mathrm{g}, 0.5 \mathrm{mmol}$) was repeated and the product, obtained after 18 h , was subjected to HPLC [EtOAc-hexanes ($2: 1$) as eluent] to give two fractions.

The first-eluted fraction ($0.056 \mathrm{~g}, 23 \%$), isolated as a colourless syrup, was identified as a $50: 50$ mixture of compounds 19a and 20a; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.69,20.72,20.83,20.90,21.01$,
21.18 and $21.29\left(5 \times \mathrm{CH}_{3} \mathrm{CO}\right), 26.24$ and $26.29\left(1-\mathrm{CH}_{3}\right), 61.78$ and $61.83\left(6 '-\mathrm{CH}_{2}\right), 68.19,68.42,71.03,71.08,72.29,72.38$, 72.66 and 72.75 ($2^{\prime}-, 3^{\prime}-, 4^{\prime}$ - and $5^{\prime}-\mathrm{CH}$), 89.81 and 92.24 ($1^{\prime \prime-}$ $\mathrm{CH}), 98.44$ and $102.5\left(1^{\prime}-\mathrm{CH}\right), 127.5$ and $128.9\left(4-\mathrm{CH}_{2}\right), 143.6$ and 143.7 (3-C), 169.51, 169.54, 169.63, 169.66, 169.8, 170.2, 170.3 and $170.8(5 \times \mathrm{MeCO})$, and 197.0 (2-CO). After crystallisation from diethyl ether-hexanes, the sample ($0.042 \mathrm{~g}, 17 \%$) (now as a $44: 56$ mixture of $\mathbf{1 9 a}$ and 20a) showed $\mathrm{mp} 99-100^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-36\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
The second-eluted fraction $(0.124 \mathrm{~g}, 51 \%)$, isolated as a colourless syrup, was identified as the acetoxy derivative 18a. After crystallisation from ethyl acetate-hexanes, the sample $(0.104 \mathrm{~g}, 43 \%)$ showed $\mathrm{mp} 103-104{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-8\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Reactions of allylic bromides with alcohols in the presence of silver(I) oxide

General procedure. A suspension of silver(I) oxide (0.255 g , 1.1 mmol) in the alcohol ($50 \mathrm{~cm}^{3}$) was stirred in the dark for 1.5 h and then the allylic bromide (1 mmol) was added. After 24 h , the mixture was diluted with methylene dichloride and filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was washed successively with brine and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Following analysis by 300 or $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy, the product was purified in the manner described.

Reaction involving the allylic bromide $14 a$ and methanol. (i) From the reaction involving the allylic bromide $14 \mathrm{a}(0.102 \mathrm{~g}$, 0.2 mmol), aliquots ($\approx 1 \mathrm{~cm}^{3}$) were removed, worked up and analysed at intervals. After 2 h , compound 14a was essentially depleted and mainly a 7:67:26 mixture of compounds 23a, 24a and 25a was present [the proportions were estimated from the integrals of the signals at $\delta 7.50$ (attributed to the $4-\mathrm{H}$ of 23a), 5.42 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 24a) and 5.70 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of 25a)]. Although the proportions remained unaltered over 120 h , new signals attributable to the dimethoxy derivative 26a [$7.39(4-\mathrm{H})$] and to the tetraacetate 27 \{as a $2: 1$ mixture of α - and β-anomers $\delta 5.23$ ($3-\mathrm{H}$ of α-anomer) and 5.53 (3-H of β-anomer) $\}\}$ grew in intensity (the ratio of 23a and 26a was $\approx 1: 1$ after 24 h and $\approx 1: 3$ after 120 h).
(ii) The product obtained from the reaction of the allylic bromide 14a ($0.509 \mathrm{~g}, 1.0 \mathrm{mmol}$) was subjected to HPLC [EtOAc-hexanes ($2: 1$) as eluent] to give three fractions.

The first-eluted fraction ($0.302 \mathrm{~g}, 66 \%$), isolated as a colourless syrup, was identified as a 70:30 mixture of compounds 24a and 25a; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ (inter alia for 25a) $2.35(3 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{H}_{3}\right), 3.25(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.70(1 \mathrm{H}, \mathrm{s}$, $1^{\prime \prime}-\mathrm{H}$) and 6.24 and 6.29 (each $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}$). Crystallisation of the mixture from diethyl ether-hexanes gave ($\left.l^{\prime \prime} R\right)-l^{\prime \prime}$-methoxy-$3-\left[1^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-tetra-O-acetyl- β-D-glucopyranosyloxy)methyl $]$ -but-3-en-2-one 24a ($0.118 \mathrm{~g}, 26 \%$); $\mathrm{mp} 113-114^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-68(c$ $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, $52.5 ; \mathrm{H}, 5.8 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{12}$ requires C, 52.2; H, $6.1 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 211(\varepsilon 6800) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1740 (ester $\mathrm{C}=\mathrm{O}$) and 1670 (enone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.992, 1.993, 2.02 and 2.07 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $2.34(3 \mathrm{H}$, $\left.\mathrm{s}, 1-\mathrm{H}_{3}\right), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.68(1 \mathrm{H}$, ddd, $J 3,5$ and 9.5 , $\left.5^{\prime}-\mathrm{H}\right), 4.14$ and 4.19 [each 1 H , dd ($J 3$ and 12) and dd ($J 5$ and 12), $6^{\prime}-\mathrm{H}_{2}$], $4.69\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.99-5.09\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and}\right.$ $\left.4^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.16 and 6.19 (each $\left.1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.72$ and 20.82 $\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 26.51\left(1-\mathrm{CH}_{3}\right), 56.17\left(\mathrm{CH}_{3} \mathrm{O}\right), 62.17\left(6^{\prime}-\mathrm{CH}_{2}\right)$, $68.55,71.35,72.09$ and 73.06 ($2^{\prime}-, 3^{\prime}-, 4^{\prime}-$ and $5^{\prime}-\mathrm{CH}$), 97.62 and 100.0 ($1^{\prime}-$ and $\left.1^{\prime \prime}-\mathrm{CH}\right), 126.4\left(4-\mathrm{CH}_{2}\right), 145.4$ (3-C), 169.2, 169.6, 170.4 and $170.7(4 \times \mathrm{MeCO})$ and $197.9(2-\mathrm{CO}) ; ~ m / z$ (FAB) $483\left[\mathrm{M}(\mathrm{Na})^{+}, 5 \%\right], 385\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{10}{ }^{+}\right.$, 5), $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 100) and 169 (25).

The second-eluted fraction ($0.026 \mathrm{~g}, 6 \%$), isolated as a colourless syrup, was identified as (E)-3-methoxymethyl-4-($2^{\prime}, 3^{\prime}, 4^{\prime}$, 6^{\prime}-tetra-O-acetyl- β-D-glucopyranosyloxy)-but-3-en-2-one 23a. After crystallisation from ethyl acetate-hexanes, the sample
$(0.020 \mathrm{~g}, 4 \%)$ showed mp $121-122^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-16\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 52.1; H, 5.8\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 239 \mathrm{~nm}(\varepsilon 15300)$; $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 1755$ and 1742 (ester $\mathrm{C}=\mathrm{O}$), 1662 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.03,2.041$, 2.043 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $2.28\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right)$, $3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.84\left(1 \mathrm{H}\right.$, ddd, $J 2,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right)$, $4.14\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{O}\right), 4.15$ and 4.29 [each 1 H , dd ($J 2.5$ and $12.5)$ and $\mathrm{dd}(J 4.5$ and 12.5$\left.), 6^{\prime}-\mathrm{H}_{2}\right], 4.94(1 \mathrm{H}, \mathrm{d}, J 7.5$, $\left.1^{\prime}-\mathrm{H}\right), 5.12-5.30\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$ and $7.50(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}) ; \mathrm{m} / z(\mathrm{FAB}) 791\left[\mathrm{M}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}\right)^{+}, 12 \%\right], 483\left[\mathrm{M}(\mathrm{Na})^{+}, 78\right]$, $462\left(\mathrm{MH}_{2}{ }^{+}, 24\right), 461\left(\mathrm{MH}^{+}, 95\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right), 169(90)$ and 109 (64).

The third-eluted fraction $(0.010 \mathrm{~g}, \approx 7 \%)$, isolated as a colourless syrup, was mainly (E)-4-methoxy-3-(methoxymethyl)-but-3-en-2-one 26a; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 249$ ($\left.\varepsilon 11400\right)$; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) inter alia $2.26\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.33(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeOCH} 2), 3.92(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{MeO}), 4.17\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{O}\right)$ and 7.39 $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 146\left(\mathrm{MH}_{2}{ }^{+}, 46 \%\right), 129\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}\right.$, 100] and $113\left[\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right)^{+}\right.$, 94].
(iii) The product obtained from the reaction of the allylic bromide 14 a ($0.509 \mathrm{~g}, 1.0 \mathrm{mmol}$) was subjected to column chromatography [EtOAc-light petroleum (2:1) as eluent] to give two fractions.

The first-eluted fraction $(0.253 \mathrm{~g}, 55 \%)$, isolated as a colourless syrup, was a $65: 35$ mixture of the methoxy derivatives $\mathbf{2 4 a}$ and 25a. Crystallisation of the mixture from diethyl ether-light petroleum gave compound $24 \mathrm{a}(0.115 \mathrm{~g}, 25 \%)$.

The second-eluted fraction ($0.032 \mathrm{~g}, 7 \%$) [$0.019 \mathrm{~g}, 4 \%$ (after crystallisation from EtOAc-light petroleum)] was compound $23 a$.

Reaction involving the allylic bromide 14a and ethanol. (i) The reaction involving the allylic bromide $\mathbf{1 4 a}(0.509 \mathrm{~g}, 1.0 \mathrm{mmol})$ gave rise to a product that comprised mainly an 11:72:17 mixture of the ethoxy derivatives $\mathbf{2 3 b}, \mathbf{2 4 b}$ and $\mathbf{2 5 b}$ [the proportions were estimated from the integrals of the signals at $\delta 7.47$ (attributed to the $4-\mathrm{H}$ of 23b), 5.51 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 4 b}$) and 5.72 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 5 b}$)]. Subjection of the mixture to HPLC [EtOAc-hexanes (2:1) as eluent] led to the isolation of two fractions.

The first-eluted fraction $(0.334 \mathrm{~g}, 70 \%)$, isolated as a colourless syrup, was identified as an $81: 19$ mixture of compounds 24b and 25b; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia for 25b) $2.34(3 \mathrm{H}$, $\left.\mathrm{s}, 1-\mathrm{H}_{3}\right), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.72\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.24 and 6.25 (each $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}$). Crystallisation of the mixture from diethyl ether-hexanes gave $\left(I^{\prime \prime} R\right)$ - $l^{\prime \prime}$-ethoxy- $3-\left[l^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$ -tetra-O-acetyl- β-D-glucopyranosyloxy)methyl]but-3-en-2-one 24b ($0.104 \mathrm{~g}, 22 \%$); mp 105-106 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-56\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, $52.9 ; \mathrm{H}, 6.3 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{12}$ requires C, 53.2; $\mathrm{H}, 6.4 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 211(\varepsilon 6900) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745$ (ester $\left.\mathrm{C}=\mathrm{O}\right)$ and 1675 (enone C=O); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me} \mathrm{CH}_{2}$), 1.987, 1.990, 2.02 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $2.34\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.56$ and 3.87 (each $1 \mathrm{H}, \mathrm{dq}, J 9.5$ and 7 , $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 3.67\left(1 \mathrm{H}, \mathrm{dt}, J 10\right.$ and $\left.3.5,5^{\prime}-\mathrm{H}\right), 4.14-4.16(2 \mathrm{H}, \mathrm{m}$, $6^{\prime}-\mathrm{H}_{2}$), 4.69 ($\left.1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.98-5.08$ ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}$ - and $4^{\prime}-\mathrm{H}$), $5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.15 and 6.21 (each $\left.1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.02\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 20.67, 20.69 and $20.79\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 26.53\left(1-\mathrm{CH}_{3}\right), 62.22$ $\left(6^{\prime}-\mathrm{CH}_{2}\right), 64.34\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 68.56,71.34,72.05$ and $73.07\left(2^{\prime}-\right.$, $3^{\prime}-, 4^{\prime}-$ and $\left.5^{\prime}-\mathrm{CH}\right), 97.51$ and 98.53 ($1^{\prime}-$ and $1^{\prime \prime}-\mathrm{CH}$), 126.2 $\left(4-\mathrm{CH}_{2}\right), 145.7(3-\mathrm{C}), 169.2,169.5,170.3$ and $170.6(4 \times \mathrm{MeCO})$ and 198.0 (2-CO); m / z (FAB) $601\left[\mathrm{M}_{\left.\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}\right)^{+}, 2 \%\right], 497}\right.$ $\left[\mathrm{M}(\mathrm{Na})^{+}, 2\right], 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 34\right), 169(66), 127\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}, 89\right)$, 109 (50), $99\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{+}, 79\right)$ and $43\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}, 100\right)$.

The second-eluted fraction $(0.046 \mathrm{~g}, 10 \%)$, isolated as a colourless syrup, was identified as (E)-3-ethoxymethyl-4-($2^{\prime}, 3^{\prime}$, $4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy) but-3-en-2-one 23b. After crystallisation from ethyl acetate-hexanes, the sample $(0.032 \mathrm{~g}, 7 \%)$ showed mp $102-104{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-12\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 53.2; H, 6.4\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 239(\varepsilon 17100) ; v_{\text {max }}$
$(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1740 (ester $\mathrm{C}=\mathrm{O}$), 1690 (vinylogous ester $\mathrm{C}=\mathrm{O}$) and $1610(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17(3 \mathrm{H}, \mathrm{t}, J 7$, MeCH_{2}), 2.03, 2.040, 2.042 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $2.29\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.45\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OC} \mathrm{H}_{2} \mathrm{Me}\right), 3.83(1 \mathrm{H}, \mathrm{ddd}$, $J 2,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.14$ and 4.29 [each 1 H , dd ($J 2.5$ and $12.5)$ and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.19\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{O}\right), 4.94$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.11-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.28\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 20.59$, 20.65 and $20.78\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 26.75\left(1-\mathrm{CH}_{3}\right), 61.30,61.57$ and $65.79\left(6^{\prime}-\mathrm{CH}_{2}, 3-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 67.82,70.63,72.23$ and 72.77 ($2^{\prime}-, 3^{\prime}-, 4^{\prime}-$ and $5^{\prime}-\mathrm{CH}$), 100.9 ($1^{\prime}-\mathrm{CH}$), 120.6 (3-C), 156.0 $(4-\mathrm{CH}), 169.1,169.4,170.2$ and $170.6(4 \times \mathrm{MeCO})$ and 197.4 (2-CO); m / z (FAB) $497\left[\mathrm{M}(\mathrm{Na})^{+}, 6 \%\right], 475\left(\mathrm{MH}^{+}, 18\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right), 169(53), 109(22)$ and $43\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+}, 53\right)$.
(ii) The product obtained from the reaction of the allylic bromide 14a ($0.255 \mathrm{~g}, 0.5 \mathrm{mmol}$) was subjected to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent]. One main fraction ($0.142 \mathrm{~g}, 60 \%$) was obtained; it comprised largely a 67:33 mixture of the ethoxy derivatives $\mathbf{2 4 b}$ and $\mathbf{2 5 b}$.

Reaction involving the allylic bromide 14 a and propan-1-ol. (i) The reaction involving the allylic bromide 14a $(0.509 \mathrm{~g}, 1.0$ mmol) gave rise to a product that comprised mainly a $13: 62: 25$ mixture of the propoxy derivatives $23 \mathrm{c}, \mathbf{2 4 c}$ and 25 c [the proportions were estimated from the integrals of the signals at $\delta 7.47$ (attributed to the $4-\mathrm{H}$ of $\mathbf{2 3 c}$), 5.50 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 4 c}$) and 5.73 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 5 c}$)]. Subjection of the mixture to HPLC [EtOAc-hexanes (2:1) as eluent] led to the isolation of two fractions.
The first-eluted fraction $(0.322 \mathrm{~g}, 66 \%)$, isolated as a colourless syrup, was identified as a $72: 28$ mixture of ($\left.l^{\prime \prime} R\right)-3-\left[1^{\prime \prime}-\right.$ propoxy-1"-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)-methyllbut-3-en-2-one 24c and its ($l^{\prime \prime} S$)-isomer 25c. After crystallisation from diethyl ether-hexanes, the sample ($0.176 \mathrm{~g}, 36 \%$) (still as a $72: 28$ mixture of $\mathbf{2 4 c}$ and $\mathbf{2 5 c}$) showed $\mathrm{mp} 98-100^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-46\left(c \quad 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 54.3; H, 6.9. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{12}$ requires C, $54.1 ; \mathrm{H}, 6.6 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 211$ ($\varepsilon 6600$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745$ (ester $\mathrm{C}=\mathrm{O}$) and 1675 (enone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 0.89 and 0.91 (0.84 and 2.16 H , each $\mathrm{t}, J 7.5$, MeCH_{2}), 1.52-1.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}$), 1.99, 2.01, 2.02, 2.03, 2.07 and 2.08 ($4.32,0.84,3.00,0.84,0.84$ and 2.16 H , each s, $4 \times \mathrm{MeCO}_{2}$), 2.33 and 2.34 (2.16 and 0.84 H , each s, $1-\mathrm{H}_{3}$), $3.36-3.48$ and $3.73-3.81$ [each $1 \mathrm{H}, \mathrm{m}$ and $\mathrm{dt}(J 9.5$ and 6.5$)$, $\left.\mathrm{OCH}_{2} \mathrm{Et}\right], 3.63-3.71\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.08$, 4.14-4.16 and 4.21 $[0.28,1.44$ and 0.28 H , dd ($J 2$ and 12), m and dd ($J 5$ and 12), $6^{\prime}-\mathrm{H}_{2}$], 4.70 and 4.83 (0.72 and 0.28 H , each d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.98-$ $5.10\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.19$ and $5.23(0.72$ and 0.28 H , each t, $\left.J 9.5,3^{\prime}-\mathrm{H}\right), 5.50$ and 5.73 (0.72 and 0.28 H , each s, $1^{\prime \prime}-\mathrm{H}$) and $6.14,6.20,6.23$ and $6.25(0.72,0.72,0.28$ and 0.28 H , each s, $\left.4-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.66$ and $10.71\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of $\mathbf{2 4 c}$ and 25c), 20.73 and $20.83\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 22.80$ and 22.90 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ of $\mathbf{2 4} \mathrm{c}$ and $\left.\mathbf{2 5} \mathrm{c}\right), 26.56$ and $26.59\left(1-\mathrm{CH}_{3}\right.$ of $\mathbf{2 5 c}$ and $\mathbf{2 4 c}$), 61.99 and $62.22\left(6^{\prime}-\mathrm{CH}_{2}\right.$ of $\mathbf{2 5}$ c and $\mathbf{2 4 c}$), 67.80 and 70.55 $\left(\mathrm{OCH}_{2} \mathrm{Et}\right.$ of 25 c and 24 c$), 68.51,68.55,71.24,71.35,72.06$, 72.98 and $73.11\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{CH}\right), 95.83,96.32,97.48$ and 98.76 ($1^{\prime}-$ and $\left.1^{\prime \prime}-\mathrm{CH}\right), 126.1$ and $128.2\left(4-\mathrm{CH}_{2}\right.$ of $\mathbf{2 4 c}$ and 25c), 144.5 and 145.7 (3-C of 25c and 24c), 169.2, 169.3, 169.6, $170.4,170.7$ and $170.8(4 \times \mathrm{MeCO})$ and 197.7 and $198.0(2-\mathrm{CO}$ of 25c and 24c); m / z (FAB) $628\left[\mathrm{M}_{\left.\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}\right)^{+}, 8 \%\right], 527}\right.$ $\left[\mathrm{M}(\mathrm{K})^{+}, 3\right], 511\left[\mathrm{M}(\mathrm{Na})^{+}, 8\right], 489\left(\mathrm{MH}^{+}, 1\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}{ }^{+}\right.$, 23), 169 (37), $141\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}, 46\right), 109(25)$ and $99\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{+}\right.$, 100).

The second-eluted material $(0.054 \mathrm{~g}, 11 \%)$, isolated as a colourless syrup, wasidentified as (E)-3-propoxymethyl-4-($2^{\prime}, 3^{\prime}$, $4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)but-3-en-2-one 23c. After crystallisation from ethyl acetate-hexanes, the sample ($0.038 \mathrm{~g}, 8 \%$) showed $\mathrm{mp} 81-82^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+4\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 53.8; H, 6.5\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 239$ ($\varepsilon 17200$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1735 (ester $\mathrm{C}=\mathrm{O}$), 1690 (vinylogous ester $\mathrm{C}=\mathrm{O})$ and $1610(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{t}, J 7.5$,
$\left.\mathrm{MeCH} \mathrm{C}_{2}\right), 1.50-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 2.03,2.04$ and $2.09(3,6$ and 3 H , each s, $4 \times \mathrm{MeCO}_{2}$), $2.29\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.34(2 \mathrm{H}, \mathrm{t}$, $\left.J 6.5, \mathrm{OCH}_{2} \mathrm{Et}\right), 3.82\left(1 \mathrm{H}, \mathrm{ddd}, J 2.5,5\right.$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.08-4.23$ ($3 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$ and $3-\mathrm{CH}_{2} \mathrm{O}$), $4.29\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.12.5,6^{\prime}-\mathrm{H}\right)$, 4.93 ($\left.1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right)$, $5.11-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.74\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 20.64, 20.68 and $20.81\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 22.98\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.91$ $\left(1-\mathrm{CH}_{3}\right), 61.59$ and $61.63\left(6^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.3-\mathrm{CH}_{2}\right), 67.89,70.71$, 72.20 and $72.83\left(2^{\prime}-, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{CH}\right), 72.31\left(\mathrm{OCH}_{2} \mathrm{Et}\right), 101.0$ ($\left.1^{\prime}-\mathrm{CH}\right), 120.5(3-\mathrm{C}), 155.8(4-\mathrm{CH}), 169.1,169.4,170.2$ and $170.7(4 \times \mathrm{MeCO})$ and $197.6(2-\mathrm{CO}) ; m / z(\mathrm{FAB}) 511\left[\mathrm{M}(\mathrm{Na})^{+}\right.$, $7 \%], 489\left(\mathrm{MH}^{+}, 7\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 62\right), 169(100), 109(68)$ and 43 (88).
(ii) The product obtained from the reaction of the allylic bromide $14 \mathrm{a}(0.153 \mathrm{~g}, 0.3 \mathrm{mmol})$ was subjected to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent]. One main fraction ($0.083 \mathrm{~g}, 56 \%$) was obtained; it comprised largely a 55:45 mixture of the propoxy derivatives $\mathbf{2 4 c}$ and $\mathbf{2 5 c}$.

Reaction involving the allylic bromide 14a and isopropyl alcohol. (i) The reaction involving the allylic bromide $\mathbf{1 4 a}(0.509 \mathrm{~g}$, 1.0 mmol) gave rise to a product that comprised mainly a 15:67:18 mixture of the isopropoxy derivatives 23d, 24d and 25d [the proportions were estimated from the integrals of the signals at $\delta 7.44$ (attributed to the $4-\mathrm{H}$ of 23d), 5.61 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 4 d}$) and 5.72 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 5 d}$)]. Subjection of the mixture to HPLC [EtOAc-hexanes $(2: 1)$ as eluent] led to the isolation of two fractions.

The first-eluted fraction $(0.316 \mathrm{~g}, 65 \%)$, isolated as a colourless syrup, was identified as a 79:21 mixture of compounds $\mathbf{2 4 d}$ and 25d; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia for $\left.\mathbf{2 5 d}\right) 2.34(3 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{H}_{3}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.72\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.22 and 6.25 (each $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}$). Crystallisation of the mixture from diethyl ether-hexanes gave ($\left.1^{\prime \prime} R\right)-3-\left[l^{\prime \prime}\right.$-isopropoxy- $l^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}\right.$, 6^{\prime}-tetra-O-acetyl- β-D-glucopyranosyloxy)methyl]but-3-en-2-one 24d ($0.104 \mathrm{~g}, 21 \%$); mp $113-114^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-76\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 53.9; H, 6.6. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{12}$ requires C, $54.1 ; \mathrm{H}, 6.6 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 212(\varepsilon 6900) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740$ (ester $\left.\mathrm{C}=\mathrm{O}\right)$ and 1670 (enone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14$ and 1.22 (each $3 \mathrm{H}, \mathrm{d}, J 6, M e_{2} \mathrm{CH}$), 1.988, 1.992, 2.02 and 2.08 (each $\left.3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.66(1 \mathrm{H}, \mathrm{dt}, J 10$ and 4, $\left.5^{\prime}-\mathrm{H}\right), 4.04(1 \mathrm{H}$, sept, $J 6, \mathrm{OCHMe} 2), 4.15(2 \mathrm{H}, \mathrm{d}$, separation 4 , $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J \mathrm{~J}^{\prime} 1^{\prime}-\mathrm{H}\right), 4.98-5.07\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$, $5.18\left(1 \mathrm{H} \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.61\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.13 and 6.20 (each $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 20.71, 20.73 and $20.83\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 21.37$ and $23.23\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 26.66$ $\left(1-\mathrm{CH}_{3}\right), 62.30\left(6^{\prime}-\mathrm{CH}_{2}\right), 68.63,70.22,71.39,72.05$ and 73.18 ($2^{\prime}-, 3^{\prime}-, 4^{\prime}-$ and $5^{\prime}-\mathrm{CH}$ and OCHMe 2), 96.24 and 97.17 ($1^{\prime}-$ and $\left.1^{\prime \prime}-\mathrm{CH}\right), 126.1\left(4-\mathrm{CH}_{2}\right), 146.3(3-\mathrm{C}), 169.2,169.6,170.4$ and 170.7 $(4 \times \mathrm{MeCO})$ and $198.2(2-\mathrm{CO}) ; m / z(\mathrm{FAB}) 489\left(\mathrm{MH}^{+}, 1 \%\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 45\right), 169(100)$ and $141\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}, 60\right)$.

The second-eluted fraction $(0.064 \mathrm{~g}, 13 \%)$, isolated as a colourless syrup, was identified as (E)-3-isopropoxymethyl-4-($2^{\prime}, 3^{\prime}$, $4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)but-3-en-2-one 23d. After crystallisation from ethyl acetate-hexanes, the sample $(0.044 \mathrm{~g}, 9 \%)$ showed $\mathrm{mp} 99-100^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+8\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (Found: C, 54.1; H, 6.6\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 239$ ($\varepsilon 15600$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ and 1735 (ester $\mathrm{C}=\mathrm{O}$), 1690 (vinylogous ester $\mathrm{C}=\mathrm{O})$ and $1610(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14$ and 1.15 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{Me} e_{2} \mathrm{CH}$), 2.02, 2.038, 2.043 and 2.09 (each $\left.3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.58(1 \mathrm{H}$, sept, $J 6$, $\mathrm{OC} H \mathrm{Me}_{2}$), 3.82 (1 H , ddd, $J 2.5,4.5$ and $9.5,5^{\prime}-\mathrm{H}$), 4.11-4.16 and 4.29 [each $1 \mathrm{H}, \mathrm{m}$ and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.14 and 4.22 (each $\left.1 \mathrm{H}, \mathrm{d}, J 10.5,3-\mathrm{CH}_{2} \mathrm{O}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right)$, $5.11-5.29\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.44(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.61$ and $20.75\left(4 \times \mathrm{CH}_{3} \mathrm{CO}\right), 22.08$ and $22.16\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 26.86\left(1-\mathrm{CH}_{3}\right), 59.05$ and $61.56\left(3-\mathrm{CH}_{2}\right.$ and $\left.6^{\prime}-\mathrm{CH}_{2}\right), 67.80,70.66,71.16,72.29$ and 72.72 ($2^{\prime}-, 3^{\prime}-$,, 4^{\prime} - and $5^{\prime}-\mathrm{CH}$ and OCHMe_{2}), 100.8 ($\left.1^{\prime}-\mathrm{CH}\right), 120.8$ (3-C), 155.6 $(4-\mathrm{CH}), 169.0,169.4,170.2$ and $170.6(4 \times \mathrm{MeCO})$ and 197.5
(2-CO); $m / z(\mathrm{FAB}) 511\left[\mathrm{M}(\mathrm{Na})^{+}, 6 \%\right], 489\left(\mathrm{MH}^{+}, 17\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 93\right), 169$ (100) and 109 (71).
(ii) The product from the reaction of the allylic bromide 14a ($0.382 \mathrm{~g}, 0.75 \mathrm{mmol}$) was subjected to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent] to give three fractions.
The first-eluted fraction $(0.070 \mathrm{~g}, 19 \%)$ was identified as a 58:42 mixture of the isopropoxy derivatives $\mathbf{2 4 d}$ and $\mathbf{2 5 d}$.

The second-eluted fraction $(0.025 \mathrm{~g}, \approx 7 \%)$ was mainly a $70: 30$ mixture of the isopropoxy derivatives $\mathbf{2 4 d}$ and $\mathbf{2 5 d}$. Crystallisation of the mixture from diethyl ether-light petroleum gave compound $\mathbf{2 4 d}(0.011 \mathrm{~g}, 3 \%)\left\{\mathrm{mp} 114-115^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-78\right.$ (c $\left.0.2, \mathrm{CHCl}_{3}\right)$.
The third-elution fraction $(0.020 \mathrm{~g}, 5 \%)$ was mainly compound 23d.

Reaction involving the allylic bromide 14a and tert-butyl alcohol. (i) The reaction involving the allylic bromide $\mathbf{1 4 a}(0.102 \mathrm{~g}$, 0.2 mmol) [in the presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$] gave rise to a product that comprised mainly a $29: 61: 10$ mixture of the tertbutoxy derivatives $23 \mathrm{e}, \mathbf{2 4 e}$ and 25 e [the proportions were estimated from the integrals of the signals at $\delta 7.40$ (attributed to the $4-\mathrm{H}$ of 23e), 5.84 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 24 e) and 5.79 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of 25 e)]. Subjection of the mixture to HPLC [EtOAc-hexanes $(2: 1)$ as eluent] led to the isolation of two fractions.

The first-eluted fraction $(0.050 \mathrm{~g}, 50 \%)$, isolated as a colourless syrup, was identified as a $84: 16$ mixture of the tert-butoxy derivatives 24 e and $\mathbf{2 5 e}$. Crystallisation of the mixture from diethyl ether-hexanes gave ($1^{\prime \prime} R$)-3-[$1^{\prime \prime}-\left(\right.$ tert-butoxy)-1"-(2', 3^{\prime}, $4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)methyl]but-3-en-2one $24 \mathrm{e}(0.016 \mathrm{~g}, 16 \%)$; mp 137-138 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-79\left(c 0.3, \mathrm{CHCl}_{3}\right)$ (Found: C, 54.7; H, 6.7. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{12}$ requires $\mathrm{C}, 55.0 ; \mathrm{H}, 6.8 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 207$ ($\varepsilon 7100$); $v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 1755$ (ester $\mathrm{C}=\mathrm{O})$ and 1670 (enone $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(9 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}_{3} \mathrm{C}$), 1.99, 2.02 and $2.08\left(3,6\right.$ and 3 H , each s, $4 \times \mathrm{MeCO}_{2}$), $2.33\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.59\left(1 \mathrm{H}, \mathrm{dt}, J 10\right.$ and $\left.4,5^{\prime}-\mathrm{H}\right), 4.13(2 \mathrm{H}, \mathrm{d}$, separation 4, $6^{\prime}-\mathrm{H}_{2}$), $4.69\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.96-5.06(2 \mathrm{H}, \mathrm{m}$, $2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.84\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.11 and 6.16 (each $\left.1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\right) ; m / z(\mathrm{FAB}) 525\left[\mathrm{M}(\mathrm{Na})^{+}\right.$, 10%], $503\left(\mathrm{MH}^{+}, 4\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and $169(45)$.

The second-eluted fraction $(0.016 \mathrm{~g}, 16 \%)$, isolated as a colourless syrup, was identified as (E)-3-(tert-butoxymethyl)-4-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)but-3-en-2one 23e. After crystallisation from ethyl acetate-hexanes, the sample ($0.012 \mathrm{~g}, 12 \%$) showed $\mathrm{mp} 92-93{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+14(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 54.8; H, 6.8\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 240$ (ε 15300); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1756$ (ester $\mathrm{C}=\mathrm{O}$), 1687 (vinylogous ester $\mathrm{C}=\mathrm{O})$ and $1605(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{3} \mathrm{C}$), 2.00, 2.01, 2.02 and 2.06 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 2.26 $\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.81\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.05$ and 4.15 (each $1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{CH}_{2} \mathrm{OCMe}_{3}$), 4.11 and 4.26 [each 1 H , dd $(J 2.5$ and 12.5$)$ and dd $(J 4.5$ and 12.5$\left.), 6^{\prime}-\mathrm{H}_{2}\right], 4.92$ (1 H, d, J 7.5, 1'-H), 5.09-5.26 (3 H, m, 2'-, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.40(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; m / z(\mathrm{FAB}) 525\left[\mathrm{M}(\mathrm{Na})^{+}, 9 \%\right], 503\left(\mathrm{MH}^{+}, 8\right)$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 60\right)$ and 169 (100).
(ii) The product obtained from the reaction of the allylic bromide $14 \mathrm{a}(0.255 \mathrm{~g}, 0.5 \mathrm{mmol})$ [in the presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(5 \mathrm{~cm}^{3}\right)$] was subjected to column chromatography [EtOAclight petroleum ($2: 1$) as eluent] to give two fractions.

The first-eluted fraction $(0.099 \mathrm{~g}, 39 \%)$ was a $73: 27$ mixture of the tert-butoxy derivatives 24 e and 25 e . Crystallisation of the mixture from diethyl ether-hexanes gave compound $\mathbf{2 4 e}$ ($0.065 \mathrm{~g}, 26 \%$).

The second-eluted fraction ($0.049 \mathrm{~g}, 20 \%$) $[0.025 \mathrm{~g}, 10 \%$ (after crystallisation from EtOAc-light petroleum)] was compound 23e.

Reaction involving the allylic bromide 14b and methanol. The reaction involving the allylic bromide $\mathbf{1 4 b}(0.314 \mathrm{~g}, 0.6 \mathrm{mmol})$ gave rise to a product that comprised mainly a $7: 63: 30$ mixture
of the methoxy derivatives 28a, 29a and 30a [the proportions were estimated from the integrals of the signals at $\delta 7.50$ (attributed to the $1-\mathrm{H}$ of 28a), 5.44 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of 29a) and 5.72 (assigned to $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{3 0 a}$)]. There was also evidence for the presence of the dimethoxy derivative 26b $[\delta 7.40(1-\mathrm{H}), 3.93$ $(1-\mathrm{MeO})$ and $3.35\left(\mathrm{MeOCH}_{2}\right)$] (the ratio of 28a and 26b was $\approx 1: 2$) and the tetraacetate 27. Subjection of the mixture to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent] led to the isolation of one major fraction $(0.167 \mathrm{~g}, 59 \%)$ identified as a 69:31 mixture of ($\left.I^{\prime \prime} R\right)-2-\left[l^{\prime \prime}\right.$-methoxy- $l^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-\right.$ tetra-O-acetyl- β-D-glucopyranosyloxy)methyl]pent-1-en-3-one
29a and its ($l^{\prime \prime} S$)-isomer 30a. After crystallisation from diethyl ether-light petroleum, the sample ($0.117 \mathrm{~g}, 41 \%$) (still as a 69:31 mixture of 29a and 30a) showed $\mathrm{mp} 57-58^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-3$ (c $0.4, \mathrm{CHCl}_{3}$) (Found: C, 53.3; H, 6.2. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{12}$ requires C, $53.2 ; \mathrm{H}, 6.4 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 212(\varepsilon 7100) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1750 (ester $\mathrm{C}=\mathrm{O}$) and 1680 (enone $\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.09 and $1.10\left(2.07\right.$ and 0.93 H , each $\left.\mathrm{t}, J 7,5-\mathrm{H}_{3}\right), 1.99,2.01$, 2.02, 2.04 and $2.07(4.14,0.93,4.14,0.93$ and 1.86 H , each s, $\left.4 \times \mathrm{MeCO}_{2}\right), 2.61-2.80\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.25$ and $3.46(0.93$ and 2.07 H , each s, MeO), 3.67-3.71 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), 4.06-4.26 (2 H , $\mathrm{m}, 6^{\prime}-\mathrm{H}_{2}$), 4.69 and 4.84 (0.69 and 0.31 H , each d, $J 8,1^{\prime}-\mathrm{H}$), $5.00-5.12\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 5.19$ and 5.24 (0.69 and 0.31 H , each $\left.\mathrm{t}, J^{9.5}, 3^{\prime}-\mathrm{H}\right), 5.44$ and $5.72(0.69$ and 0.31 H , each s, $\left.1^{\prime \prime}-\mathrm{H}\right)$, and $6.14,6.18$ and $6.26(1.38,0.31$ and 0.31 H , each s, $\left.1-\mathrm{H}_{2}\right) ; m / z(\mathrm{FAB}) 497\left[\mathrm{M}(\mathrm{Na})^{+}, 1 \%\right], 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 65\right)$ and 169 (100).

Reaction involving the allylic bromide 14b and isopropyl alco-

 hol. The reaction involving the allylic bromide $\mathbf{1 4 b}(0.314 \mathrm{~g}, 0.6$ mmol) gave rise to a product that comprised mainly a $20: 52: 28$ mixture of the isopropoxy derivatives 28b, 29b and 30b [the proportions were estimated from the integrals of the signals at $\delta 7.44$ (attributed to the $1-\mathrm{H}$ of 28b), 5.62 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 9 b}$) and 5.72 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{3 0 b}$)]. Subjection of the mixture to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent] led to the isolation of one major fraction $(0.131 \mathrm{~g}, 43 \%)$, identified as a $66: 34$ mixture of ($\left.l^{\prime \prime} R\right)-2-\left[l^{\prime \prime}-\right.$ isopropoxy- $l^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra-O-acetyl- β - - -glucopyranosyl-oxy)methyl]pent-1-en-3-one 29b and its ($1^{\prime \prime} S$)-isomer 30b. After crystallisation from diethyl ether-light petroleum, the sample ($0.095 \mathrm{~g}, 31 \%$) (now as a $69: 31$ mixture of $\mathbf{2 9 b}$ and $\mathbf{3 0 b}$) showed $\mathrm{mp} 84-85^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-61\left(c 0.5, \mathrm{CHCl}_{3}\right)$ (Found: C, $54.7 ; \mathrm{H}, 7.0$. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{12}$ requires C, $55.0 ; \mathrm{H}, 6.8 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 210$ ($\varepsilon 8500$); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 1744$ (ester $\mathrm{C}=\mathrm{O}$) and 1680 (enone $\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06-1.25\left(9 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{3}\right.$ and $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 1.976,1.988,1.992,2.005,2.02,2.03,2.06$ and 2.08 ($0.93,2.07,2.07,0.93,2.07,0.93,0.93$ and 2.07 H , each s, $\left.4 \times \mathrm{MeCO}_{2}\right), 2.58-2.84\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.66(1 \mathrm{H}, \mathrm{ddd}, J 3,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 3.88\left(0.31 \mathrm{H}\right.$, sept, $\left.J 6,0.31 \times \mathrm{CHMe}_{2}\right), 3.98-4.22$ $\left(2.69 \mathrm{H}, \mathrm{m}, 0.69 \times \mathrm{CHMe}{ }_{2}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.68$ and $4.81(0.69$ and 0.31 H , each d, J 8, $\left.1^{\prime}-\mathrm{H}\right), 4.98-5.09\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.18$ and $5.22\left(0.69\right.$ and 0.31 H , each $\left.\mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.62$ and 5.72 (0.69 and 0.31 H , each $\mathrm{s}, 1^{\prime \prime}-\mathrm{H}$) and 6.12, 6.16, 6.20 and 6.21 ($0.69,0.69,0.31$ and 0.31 H , each s, $\mathrm{CH}_{2} \mathrm{C}$); m / z (FAB) 525 $\left[\mathrm{M}(\mathrm{Na})^{+}, 12 \%\right], 503\left(\mathrm{MH}^{+}, 3\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 65\right), 169(40)$ and 113 (100).Reaction involving the allylic bromide 14b and tert-butyl alcohol. The reaction involving the allylic bromide $\mathbf{1 4 b}(0.262 \mathrm{~g}, 0.5$ mmol) [in the presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$] gave rise to a product that comprised mainly a $29: 49: 22$ mixture of the tert-butoxy derivatives 28c, 29c and 30c [the proportions were estimated from the integrals of the signals at $\delta 7.41$ (attributed to the $1-\mathrm{H}$ of $\mathbf{2 8 c}$), 5.86 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{2 9}$) and 5.80 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\left.\mathbf{3 0} \mathbf{c}\right)$. Subjection of the mixture to column chromatography [EtOAc-light petroleum ($2: 1$) as eluent] led to the isolation of one main fraction $(0.132 \mathrm{~g}, 52 \%)$, identified as a $69: 31$ mixture of ($l^{\prime \prime} R$)-2-[$1^{\prime \prime}$-(tert-butoxy)- $1^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra- O -acetyl- β-D-glucopyranosyloxy)methyl]pent-1-en-3-one 29c and
its ($l^{\prime \prime} S$)-isomer 30c. After two crystallisations from diethyl ether-light petroleum, the sample ($0.038 \mathrm{~g}, 15 \%$) (now as an 86:14 mixture of 29 c and 30 c) showed $\mathrm{mp} 123-125^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}$ $-70\left(c 0.35, \mathrm{CHCl}_{3}\right)$ (Found: C, 55.8; H, 6.9. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{12}$ requires C, $55.8 ; \mathrm{H}, 7.0 \%)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 209$ ($\varepsilon 5900$); $v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 1748$ (ester $\mathrm{C}=\mathrm{O}$) and 1678 (enone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}_{3}\right), 1.24$ and $1.26(1.3$ and 7.7 H , each s, $\left.\mathrm{Me}_{3} \mathrm{C}\right), 1.99,2.00,2.01,2.02,2.03,2.06$ and $2.09(2.58$, $0.42,0.42,3.00,2.58,0.42$ and 2.58 H , each s, $4 \times \mathrm{MeCO}_{2}$), 2.57-2.85 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), $3.62\left(1 \mathrm{H}\right.$, ddd, $J 3,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right)$, 4.09-4.19 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}$), 4.69 and 4.76 (0.86 and 0.14 H , each d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.96-5.08\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.17$ and 5.19 (0.86 and 0.14 H , each $\mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}$), 5.80 and 5.86 (0.14 and 0.86 H , each s, $\left.\mathrm{l}^{\prime \prime}-\mathrm{H}\right)$ and $6.10,6.125,6.133$ and 6.15 ($0.86,0.86$, 0.14 and 0.14 H , each $\mathrm{s}, 1-\mathrm{H}_{2}$); $m / z(\mathrm{FAB}) 539\left[\mathrm{M}(\mathrm{Na})^{+}, 35 \%\right.$], $517\left(\mathrm{MH}^{+}, 5\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and $169(15)$.

Reaction involving the allylic bromide 14c and methanol. (i) The reaction involving the allylic bromide $\mathbf{1 4 c}(0.210 \mathrm{~g}, 0.4$ mmol) gave rise to a product that comprised mainly a 12:67:21 mixture of the methoxy derivatives 31a, 32a and 33a [the ratio was estimated from the integrals of the signals at $\delta 7.60$ (attributed to the $3-\mathrm{H}$ of 31a), 5.40 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 32a) and 5.70 (ascribed to the $\mathbf{1}^{\prime \prime}-\mathrm{H}$ of $\mathbf{3 3 a}$)]. Subjection of the mixture to HPLC [EtOAc-hexanes (2:1) as eluent] led to the isolation of two fractions.

The first-eluted fraction $(0.122 \mathrm{~g}, 64 \%)$ was identified as a 74:26 mixture of methyl ($1^{\prime \prime} R$)-2-[$1^{\prime \prime}-$ methoxy- $l^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-\right.$ tetra-O-acetyl- β-D-glucopyranosyloxy)methyl]propenoate 32a and its ($l^{\prime \prime} S$)-isomer 33a. After crystallisation from diethyl ether-hexanes, the sample ($0.064 \mathrm{~g}, 35 \%$) (now as an $84: 16$ mixture of 32a and 33a) showed $\mathrm{mp} 87-89^{\circ} \mathrm{C}$; $[\mathrm{a}]_{\mathrm{D}}-60(c 0.4$, CHCl_{3}) (Found: C, $50.1 ; \mathrm{H}, 5.8 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{13}$ requires C, $50.4 ; \mathrm{H}$, 5.9%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ (ester $\mathrm{C}=\mathrm{O}$), 1725 (unsat. ester $\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.00,2.01,2.02$, 2.024, 2.03, 2.04, 2.08 and $2.09(2.68,2.68,0.32,2.68,0.32,0.32$, 0.32 and 2.68 H , each s, $4 \times \mathrm{MeCO}_{2}$), 3.25 and 3.46 (0.32 and 2.68 H , each $\mathrm{s}, \mathrm{MeO}), 3.64\left(1 \mathrm{H}\right.$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right)$, 3.78 and 3.79 (2.68 and 0.32 H , each s, $\mathrm{MeO}_{2} \mathrm{C}$), 4.10, 4.11, 4.20 and $4.26[0.84,0.16,0.84$ and 0.16 H , dd ($J 2.5$ and 12.5), dd ($J 2.5$ and 12.5), dd ($J 5$ and 12.5) and dd ($J 5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], 4.71 and $4.85\left(0.84\right.$ and 0.16 H , each d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 5.03-5.11$ $\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.20$ and 5.23 (0.84 and 0.16 H , each t, $\left.J 9.5,3^{\prime}-\mathrm{H}\right)$, 5.40 and $5.70\left(0.84\right.$ and 0.16 H , each s, $\left.1^{\prime \prime}-\mathrm{H}\right)$ and $6.08,6.10,6.32$ and $6.46[0.84,0.16,0.84$ and $0.16 \mathrm{H}, \mathrm{t}$ $(J 1), \mathrm{t}\left(\begin{array}{ll} \\ \hline\end{array}\right), \mathrm{d}\left(\begin{array}{ll} \\ & 1)\end{array}\right)$ and $\left.\mathrm{d}(J 1), 3-\mathrm{H}_{2}\right] ; m / z(\mathrm{FAB}) 807$ $\left[\mathrm{M}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}\right)^{+}, 2 \%\right], 499\left[\mathrm{M}(\mathrm{Na})^{+}, 12\right], 477\left(\mathrm{MH}^{+}, 2\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 50\right), 169(70)$ and $129\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3}^{+}, 100\right)$.
The second-eluted fraction $(0.016 \mathrm{~g}, 8 \%)$ was methyl $(E)-2$ -methoxymethyl-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy) propenoate 31a; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.02,2.04$ and 2.09 (3,6 and 3 H , each s, $4 \times \mathrm{MeCO}_{2}$), $3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), 3.75 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.82\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.12$ $\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2} \mathrm{O}\right), 4.14$ and 4.29 (each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.92\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 5.11-$ $5.28\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.60(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$.
(ii) The product from the reaction of the allylic bromide $\mathbf{1 4 c}$ $(0.368 \mathrm{~g}, 0.7 \mathrm{mmol})$ was subjected to column chromatography [EtOAc-light petroleum (2:1) as eluent] to give two fractions.

The first-eluted fraction ($0.182 \mathrm{~g}, 52 \%$) was a $75: 25$ mixture of the methoxy derivatives 32a and 33a.

The second-eluted fraction ($0.029 \mathrm{~g}, \approx 9 \%$) was mainly compound 31a.

Reaction involving the allylic bromide 14 c and isopropyl alcohol. (i) The reaction involving the allylic bromide $14 \mathrm{c}(0.210 \mathrm{~g}$, 0.4 mmol) gave rise to a product that comprised mainly a 26:61:13 mixture of the isopropoxy derivatives 31b, 32b and

33b [the proportions were estimated from the integrals of the signals at $\delta 7.54$ (attributed to the 3-H of 31b), 5.58 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of 32b) and 5.70 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of 33b)]. Subjection of the mixture to HPLC [EtOAc-hexanes ($1: 1$) as eluent] gave two fractions.

The first-eluted fraction $(0.110 \mathrm{~g}, 55 \%)$ was identified as an 82: 18 mixture of the isopropoxy derivatives 32b and 33b. Crystallisation of the mixture from diethyl ether-hexanes gave methyl ($\left.1^{\prime \prime} R\right)-2-\left[1^{\prime \prime}\right.$-isopropoxy- $1^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra-O-acetyl $-\beta$ -D-glucopyranosyloxy)methyl]propenoate 32b ($0.034 \mathrm{~g}, 17 \%$); mp $108-109^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-58\left(c 1.54, \mathrm{CHCl}_{3}\right)$ (Found: C, $52.2 ; \mathrm{H}, 6.2$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{13}$ requires C, 52.4; H, 6.4\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 206(\varepsilon$ $6200) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16$ and 1.23 [each $3 \mathrm{H}, \mathrm{d}(J 6)$ and d ($J 6.5$), $\left.\mathrm{Me}_{2} \mathrm{CH}\right], 2.00,2.01,2.02$ and 2.09 (each $3 \mathrm{H}, \mathrm{s}$, $\left.4 \times \mathrm{MeCO}_{2}\right), 3.62\left(1 \mathrm{H}\right.$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 3.77(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeO}_{2} \mathrm{C}\right), 4.00-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCHMe} \mathrm{M}_{2}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 4.18(1 \mathrm{H}, \mathrm{dd}$, $J 5$ and 12, $\left.6^{\prime}-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.02-5.09\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.58\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.11 and 6.29 (each $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}$); mlz (FAB) $661(5 \%), 505\left(\mathrm{MH}^{+}\right.$, 2), $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 20\right), 169$ (35) and 115 (100).

The second-eluted fraction ($0.044 \mathrm{~g}, 22 \%$) was compound 31b.
(ii) The product from the reaction of the allylic bromide $\mathbf{1 4 c}$ ($0.525 \mathrm{~g}, 1.0 \mathrm{mmol}$) was subjected to column chromatography [EtOAc-light petroleum ($1: 1$) as eluent] to give two fractions.

The first-eluted fraction ($0.341 \mathrm{~g}, 67 \%$) was an 83:17 mixture of the isopropoxy derivatives $\mathbf{3 2 b}$ and $\mathbf{3 3} \mathbf{b}$. Crystallisation of the mixture from diethyl ether-light petroleum gave compound 32b ($0.213 \mathrm{~g}, 42 \%$).
The second-eluted fraction ($0.020 \mathrm{~g}, 5 \%$) $[0.013 \mathrm{~g}, 3 \%$ (after crystallisation from EtOAc-light petroleum)] was identified as methyl (E)-2-isopropoxymethyl-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β -D-glucopyranosyloxy) propenoate 31b; mp $88-89.5^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-19$ (c 0.22, CHCl_{3}) (Found: C, 52.4; H, 6.5. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{13}$ requires C, $52.4 ; \mathrm{H}, 6.4 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 227(\varepsilon 16300)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.14$ and 1.16 (each $3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}_{2} \mathrm{CH}$), 2.03, 2.04, 2.05 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.60(1 \mathrm{H}$, sept, $J 6$, $\mathrm{OC} H \mathrm{Me}_{2}$), $3.75(3 \mathrm{H}, \mathrm{s} \mathrm{MeO} 2 \mathrm{C}), 3.82(1 \mathrm{H}$, ddd, $J 2.5,4.5$ and $9.5,5^{\prime}-\mathrm{H}$), 4.12-4.18 and 4.30 [each $1 \mathrm{H}, \mathrm{m}$, and dd ($J 4.5$ and 12.5), $6^{\prime}-\mathrm{H}_{2}$], $4.15(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J 10.5$, separation of inner lines $\left.12.5,2-\mathrm{CH}_{2} \mathrm{O}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J 7,1^{\prime}-\mathrm{H}\right), 5.12-5.21(2 \mathrm{H}, \mathrm{m}$, 2^{\prime} - and $\left.4^{\prime}-\mathrm{H}\right), 5.26\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$ and $7.54(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; $m / z(\mathrm{FAB}) 527\left[\mathrm{M}(\mathrm{Na})^{+}, 30 \%\right], 505\left(\mathrm{MH}^{+}, 5\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 84), 169 (100) and 109 (77).

Reaction involving the allylic bromide 14 c and tert-butyl alcohol. The reaction involving the allylic bromide $\mathbf{1 4 c}(0.368 \mathrm{~g}, 0.7$ $\mathrm{mmol})$ [in the presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$] gave rise to a product that comprised mainly a $35: 53: 12$ mixture of the tert-butoxy derivatives 31c, 32c and 33c [the proportions were estimated from the integrals of the signals at $\delta 7.51$ (attributed to the $3-\mathrm{H}$ of 31c), 5.79 (ascribed to the $1^{\prime \prime}-\mathrm{H}$ of $\mathbf{3 2 c}$) and 5.77 (assigned to the $1^{\prime \prime}-\mathrm{H}$ of $\left.\left.\mathbf{3 3 c}\right)\right]$. Subjection of the mixture of column chromatography [EtOAc-light petroleum (1:1) as eluent] led to the isolation of two fractions.

The first-eluted fraction ($0.171 \mathrm{~g}, 48 \%$) was identified as an 82:18 mixture of the tert-butoxy derivatives 32c and 33c; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia for $\left.\mathbf{3 3 c}\right) 4.77\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right)$, $5.77\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.14 and 6.35 (each $\left.1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right)$. Crystallisation of the mixture from diethyl ether-light petroleum gave methyl ($\left.I^{\prime \prime} R\right)-2-\left[l^{\prime \prime}-(\right.$ tert-butoxy $)-1^{\prime \prime}-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra O-acetyl- β-D-glucopyranosyloxy) propenoate 32c ($0.122 \mathrm{~g}, 34 \%$); $\mathrm{mp} 135-136{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-53\left(c 0.4, \mathrm{CHCl}_{3}\right)$ (Found: 53.5; H, 6.3 . $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{13}$ requires C, 53.3; H, 6.6\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 205$ (87200); $v_{\text {max }}$ (Nujol)/cm $\mathrm{cm}^{-1} 1748$ (ester $\mathrm{C}=\mathrm{O}$), 1714 (enone $\mathrm{C}=\mathrm{O}$) and $1633(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right)$, 1.99, 2.01, 2.03 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), $3.56(1 \mathrm{H}$, ddd, $J 2.5,5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 4.05$ and 4.16
[each 1 H , dd ($J 2.5$ and 12) and dd ($J 5$ and 12), $6^{\prime}-\mathrm{H}_{2}$], 4.73 ($\left.1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.00-5.08\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 5.17(1 \mathrm{H}$, $\left.\mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.79\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{H}\right)$ and 6.09 and 6.27 (each $1 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{H}_{2}\right) ; m / z(\mathrm{FAB}) 541\left[\mathrm{M}(\mathrm{Na})^{+}, 10 \%\right], 519\left(\mathrm{MH}^{+}, 2\right)$ and 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$.
The second-eluted fraction $(0.115 \mathrm{~g}, 32 \%)$ was identified as methyl (E)-2-(tert-butoxymethyl)-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl-$\beta$-D-glucopyranosyloxy) propenoate 31c. After crystallisation from ethyl acetate-light petroleum, the sample ($0.047 \mathrm{~g}, 13 \%$) showed mp 106-107 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}-19$ (c 0.22, CHCl_{3}) (Found: C, 53.5; H, 6.6\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 227(\varepsilon 16300) ; v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 1758$ and 1736 (ester $\mathrm{C}=\mathrm{O}$), 1709 (vinylogous carbonate $\mathrm{C}=\mathrm{O})$ and $1643(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{3} \mathrm{C}$), 2.02, 2.03, 2.04 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{MeCO}_{2}$), 3.73 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}_{2} \mathrm{C}\right), 3.80\left(1 \mathrm{H}\right.$, ddd, $J 2.5,4.5$ and $\left.10,5^{\prime}-\mathrm{H}\right), 4.03$ and 4.10 (each $1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{CH}_{2} \mathrm{O}$), 4.13 and 4.28 [each 1 H , dd ($J 2.5$ and 12.5) and dd ($J 4.5$ and 12.5), $\left.6^{\prime}-\mathrm{H}_{2}\right], 4.90(1 \mathrm{H}, \mathrm{d}$, $\left.J 7,1^{\prime}-\mathrm{H}\right), 5.11-5.27\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $7.51(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H}) ; m / z(\mathrm{FAB}) 541\left[\mathrm{M}(\mathrm{Na})^{+}, 2 \%\right], 519\left(\mathrm{MH}^{+}, 1\right) 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$ and 169 (65).

Stability studies involving the methoxy compounds 23a and 24a with methanol in the presence of silver(I) oxide

The methoxy compounds 23a and 24a ($0.009 \mathrm{~g}, 0.02 \mathrm{mmol}$) were each added to suspensions of silver(I) oxide ($0.005 \mathrm{~g}, 0.02$ mmol) in methanol ($2 \mathrm{~cm}^{3}$) that had been stirred in the dark for 1.5 h . Work-up after 24 h yielded residues that contained 90% unchanged compounds 23a and 24a and 10% of the dimethoxy compound 26a.

Acknowledgements

We thank the Instituto de Biotecnologia e Quimica Fina (IBQF-Minho) for financial support, the EPSRC for research grant GR/L52246 (to assist in the purchase of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrometer) and the Royal Society for research grant 10606 (to assist in the purchase of the HPLC equipment). We are also grateful to Dr R. Perry for the elemental analyses, Mr K. Walkling for recording some of the UV and IR spectra, and Mr R. Perkins for the mass spectral determinations.

References

1 A. P. Esteves, A. M. Freitas, C. M. Raynor and R. J. Stoodley, Tetrahedron Lett., 1998, 39, 8353.
2 R. J. Stoodley, Carbohydr: Polym., 1998, 37, 249
3 D. S. Larsen, A. Schofield, R. J. Stoodley and P. D. Tiffin, J. Chem. Soc., Perkin Trans. 1, 1996, 2487.
4 M. S. Idris, D. S. Larsen, A. Schofield, R. J. Stoodley and P. D. Tiffin, Tetrahedron Lett., 1995, 36, 3251.
5 G. S. Bhatia, R. F. Lowe, R. G. Pritchard and R. J. Stoodley, Chem. Commun., 1997, 1981; G. S. Bhatia, R. F. Lowe and R. J. Stoodley, Tetrahedron Lett., 1998, 39, 9245.
6 D. S. Larsen and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1989, 1841.

7 R. C. Gupta, D. S. Larsen, R. J. Stoodley, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1989, 739.

8 J. S. Pizey, Synthetic Reagents, Ellis Horwood, Chichester, 1974, vol. 2, p. 1; Encyclopaedia of Reagents for Organic Synthesis, ed. L. A. Paquette, John Wiley, Chichester, 1995, vol. 1, p. 768.
9 L. J. Bellamy, Advances in Infrared Group Frequencies, Methuen, London, 1968, p. 57.
10 G. C. Levy and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley Interscience, New York, 1972, p. 133.
11 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley Interscience, London, 1976, pp. 41-42.
12 T.-L. Ho, Chem. Rev., 1975, 75, 1.
13 R. N. Magid, Tetrahedron, 1980, 36, 1901.

[^0]: \dagger For preliminary communication, see ref. 1.

[^1]: II In acetic acid or methanol alone, the bromide 14a decomposed within 3 h with formation of the tetraacetate 27.
 || The evidence for the assignment of the stereostructures 24a-e, 29a-c and 32a-c to the major rearranged alkoxy derivatives will be discussed elsewhere.

